Simulink®

Graphical User Interface

R2014a

MATLAB&SIMULINK®

<+)} MathWorks:

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Simulink® Graphical User Interface
© COPYRIGHT 1990-2014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Simulink 7.0 (Release 2007b)

Revised for Simulink 7.1 (Release 2008a)
Revised for Simulink 7.2 (Release 2008b)
Revised for Simulink 7.3 (Release 2009a)
Revised for Simulink 7.4 (Release 2009b)
Revised for Simulink 7.5 (Release 2010a)
Revised for Simulink 7.6 (Release 2010b)
Revised for Simulink 7.7 (Release 2011a)
Revised for Simulink 7.8 (Release 2011b)
Revised for Simulink 7.9 (Release 2012a)
Revised for Simulink 8.0 (Release 2012b)
Revised for Simulink 8.1 (Release 2013a)
Revised for Simulink 8.2 (Release 2013b)
Revised for Simulink 8.3 (Release 2014a)

Configuration Parameters
Dialog Box

e “Configuration Parameters Dialog Box Overview” on page 1-3
® “Model Configuration Pane” on page 1-6

e “Solver Pane” on page 1-9

¢ “Data Import/Export Pane” on page 1-81

® “Optimization Pane: General” on page 1-122

® “Optimization Pane: Signals and Parameters” on page 1-164
® “Optimization Pane: Stateflow” on page 1-208

® “Diagnostics Pane: Solver” on page 1-214

* “Diagnostics Pane: Sample Time” on page 1-241

® “Diagnostics Pane: Data Validity” on page 1-257

¢ “Diagnostics Pane: Type Conversion” on page 1-315

® “Diagnostics Pane: Connectivity” on page 1-328

® “Diagnostics Pane: Compatibility” on page 1-357

® “Diagnostics Pane: Model Referencing” on page 1-363

® “Diagnostics Pane: Saving” on page 1-378

® “Diagnostics Pane: Stateflow” on page 1-384

e “Hardware Implementation Pane” on page 1-402

* “Model Referencing Pane” on page 1-497

® “Simulation Target Pane: General” on page 1-534

1 Configuration Parameters Dialog Box

e “Simulation Target Pane: Symbols” on page 1-549
e “Simulation Target Pane: Custom Code” on page 1-553

® “Run on Target Hardware Pane” on page 1-571

Configuration Parameters Dialog Box Overview

Configuration Parameters Dialog Box Overview

The Configuration Parameters dialog box specifies the settings for a
model’s active configuration set. These parameters determine the type of
solver used, import and export settings, and other values that determine how
the model runs. See Configuration Sets for more information.

Note You can also use the Model Explorer to modify settings for the active
configuration set or any other configuration set. See “Model Explorer
Overview” for more information.

To display the dialog box, in the Simulink® Editor, select Simulation >
Model Configuration Parameters, or press Ctrl+E. The dialog box
appears.

1-3

1 Configuration Parameters Dialog Box

1-4

% Configuration Parameters: sldemo_fuelsys/Cenfiguration (Active) @

Select:
- Solver

-Data Import/Export
+- Optimization
+- Diagnostics

-Model Referencing
+-Simulation Target
+-Code Generation

-Hardware Implementat...

Simulation time

Start time: 0.0 Stop time: 2000

Solver options

Type: Variable-step * | Solver: |ode45 (Dormand-Prince) - |

Max step size: auto Relative tolerance: le-5

Min step size: auto Absolute tolerance: 1e-6 1
Initial step size: auto Shape preservation: | Disable all -

Number of consecutive min steps: 1

Tasking and sample time options
Tasking mode for periodic sample times: SingleTasking
Automatically handle rate transition for data transfer

Higher priority value indicates higher task priority

Zero-crossing options

Zero-crossing control: |Use local settings - | Algorithm: Nonadaptive -
Time tolerance: 10*128%eps Signal threshold: auto
Number of consecutive zero crossings: 1000
1 »
[OK] | Cancel | | Help | Apply

The dialog box groups the configuration parameters into various categories.
To display the parameters for a specific category, click the category in the
Select tree on the left side of the dialog box.

In most cases, Simulink software does not apply changes until you click OK or
Apply at the bottom of the dialog box. The OK button applies your changes
and dismisses the dialog box. The Apply button applies your changes but
leaves the dialog box open.

Configuration Parameters Dialog Box Overview

Note Each of the parameters in the Configuration Parameters dialog box
can also be set via the sim command. Each parameter description includes
the corresponding command line information.

1-5

1 Configuration Parameters Dialog Box

Model Configuration Pane

In this section...

“Model Configuration Overview” on page 1-6

“Name” on page 1-7

“Description” on page 1-8

Model Configuration Overview
View or edit the name and description of your configuration set.

In the Model Explorer you can edit the name and description of your
configuration sets.

In the Model Explorer or Simulink Preferences window you can edit

the description of your template configuration set, Model Configuration
Preferences. Go to the Model Configuration Preferences to edit the template
Configuration Parameters to be used as defaults for new models.

When editing the Model Configuration preferences, you can click Restore
to Default Preferences to restore the default configuration settings for
creating new models. These underlying defaults cannot be changed.

Model Configuration Pane

Name
Specify the name of your configuration set.

Settings
Default: Configuration (for Active configuration set) or Configuration
Preferences (for default configuration set).

Edit the name of your configuration set.

In the Model Configuration Preferences, the name of the default configuration
1s always Configuration Preferences, and cannot be changed.

1-7

1 Configuration Parameters Dialog Box

Description
Specify a description of your configuration set.

Settings
No Default

Enter text to describe your configuration set.

Solver Pane

Solver Pane

1.‘.‘50}1 Cenfiguration Parameters: vdp/Configuration (Active)

Simulation time

Initial step size: auto

Number of consecutive min steps:
Tasking and sample time options
Tasking mode for periodic sample times:

[7] Automatically handle rate transition for data transfer

[Z] Higher priority value indicates higher task priority

Zero-crossing options

Select:
Start time: 0.0 Stop time: 20
Data Import/Export P
» Optimization .
- Diagnostics Solver options
Hardware Implementation - -
Model Referencing Type: Variable-step Solver: [ode45 (Dormand-Prince)
» Simulation Target Max step size: auto Relative tolerance: 1e-3
» Code Generation
Min step size: auto Absolute tolerance: 1e-6

Shape preservation: | Disable All

1

SingleTasking

Zero-crossing control: [Use local settings

Time tolerance: 10%128%eps

Number of consecutive zero crossings:

v | Algorithm: Nonadaptive v
Signal threshold: |auto
1000
[0K J[Cancel H Help Apply

In this section...

“Solver Overview” on page 1-11
“Start time” on page 1-13
“Stop time” on page 1-15
“Type” on page 1-17

“Solver” on page 1-20

“Max step size” on page 1-28

“Initial step size” on page 1-30

m

1-9

1 Configuration Parameters Dialog Box

1-10

In this section...

“Min step size” on page 1-32

“Relative tolerance” on page 1-34

“Absolute tolerance” on page 1-36

“Shape preservation” on page 1-39

“Maximum order” on page 1-41

“Solver reset method” on page 1-43

“Number of consecutive min steps” on page 1-45

“Solver Jacobian Method” on page 1-47

“Tasking mode for periodic sample times” on page 1-49
“Automatically handle rate transition for data transfer” on page 1-51
“Deterministic data transfer” on page 1-53

“Higher priority value indicates higher task priority” on page 1-55
“Zero-crossing control” on page 1-57

“Time tolerance” on page 1-59

“Number of consecutive zero crossings” on page 1-61
“Algorithm” on page 1-63

“Signal threshold” on page 1-65

“Periodic sample time constraint” on page 1-67
“Fixed-step size (fundamental sample time)” on page 1-70
“Sample time properties” on page 1-72

“Extrapolation order” on page 1-75

“Number Newton’s iterations” on page 1-77

“Allow tasks to execute concurrently on target” on page 1-79

Solver Pane

Solver Overview

Specify the simulation start and stop time, and the solver configuration for
the simulation. Use the Solver pane to set up a solver for a model’s active
configuration set.

A solver computes a dynamic system’s states at successive time steps over a
specified time span, using information provided by the model.

Configuration

1 Select a solver type from the Type list.
2 Select a solver from the Solver list.
3 Set the parameters displayed for the selected type and solver combination.

4 Apply the changes.

Tips
® To open the Solver pane, in the Simulink Editor, select
Simulation > Model Configuration Parameters > Solver.

¢ Simulation time is not the same as clock time. For example, running
a simulation for 10 seconds usually does not take 10 seconds. Total
simulation time depends on factors such as model complexity, solver step
sizes, and computer speed.

® Fixed-step solver type is required for code generation, unless you use an
S-function or RSim target.

® Variable-step solver type can significantly shorten the time required
to simulate models in which states change rapidly or which contain
discontinuities.

See Also

® Choosing a Solver

® Specifying a Simulation Start and Stop Time

1-11

1 Configuration Parameters Dialog Box

¢ Configuration Parameters Dialog Box

e Solver Pane

1-12

Solver Pane

Start time

Specify the start time for the simulation or generated code as a
double-precision value, scaled to seconds.

Settings
Default: 0.0

® A start time must be less than or equal to the stop time. For example, use
a nonzero start time to delay the start of a simulation while running an
initialization script.

® The values of block parameters with initial conditions must match the
initial condition settings at the specified start time.

¢ Simulation time is not the same as clock time. For example, running
a simulation for 10 seconds usually does not take 10 seconds. Total
simulation time depends on factors such as model complexity, solver step
sizes, and computer speed.

Command-Line Information

Parameter: StartTime
Type: string

Value: any valid value
Default: '0.0'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution 0.0

1-13

1 Configuration Parameters Dialog Box

See Also

® Specifying a Simulation Start and Stop Time
¢ Configuration Parameters Dialog Box

e Solver Pane

1-14

Solver Pane

Stop time

Specify the stop time for the simulation or generated code as a double-precision
value, scaled to seconds.

Settings
Default: 10

® Stop time must be greater than or equal to the start time.

¢ Specify inf to run a simulation or generated program until you explicitly
pause or stop it.

e [f the stop time is the same as the start time, the simulation or generated
program runs for one step.

¢ Simulation time is not the same as clock time. For example, running
a simulation for 10 seconds usually does not take 10 seconds. Total
simulation time depends on factors such as model complexity, solver step
sizes, and computer speed.

¢ [f your model includes blocks that depend on absolute time and you are
creating a design that runs indefinitely, see “Blocks That Depend on
Absolute Time”.

Command-Line Information

Parameter: StopTime
Type: string

Value: any valid value
Default: '10.0'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution Any positive value

1-15

1 Configuration Parameters Dialog Box

1-16

See Also

® “Blocks That Depend on Absolute Time”

Using Blocks to Stop or Pause a Simulation

Specifying a Simulation Start and Stop Time

Configuration Parameters Dialog Box

Solver Pane

Solver Pane

Type

Select the type of solver you want to use to simulate your model.

Settings
Default: Variable-step

Variable-step
Step size varies from step to step, depending on model dynamics. A
variable-step solver:

® Reduces step size when model states change rapidly, to maintain
accuracy.

¢ Increases step size when model states change slowly, to avoid
unnecessary steps.

Variable-step is recommended for models in which states change
rapidly or that contain discontinuities. In these cases, a variable-step
solver requires fewer time steps than a fixed-step solver to achieve a
comparable level of accuracy. This can significantly shorten simulation
time.

Fixed-step

Step size remains constant throughout the simulation.

Required for code generation, unless you use an S-function or RSim
target.

Note The solver computes the next time as the sum of the current time and
the step size.

Dependencies
Selecting Variable-step enables the following parameters:

* Solver
* Max step size

* Min step size

1-17

1 Configuration Parameters Dialog Box

¢ Initial step size

* Relative tolerance

® Absolute tolerance

* Shape preservation

¢ Initial step size

¢ Number of consecutive min steps
e Zero-crossing control

* Time tolerance

¢ Algorithm
Selecting Fixed-step enables the following parameters:

* Solver

¢ Periodic sample time constraint

¢ Fixed-step size (fundamental sample time)

¢ Tasking mode for periodic sample times

¢ Higher priority value indicates higher task priority

¢ Automatically handle rate transitions for data transfers

Command-Line Information

Parameter: SolverType

Type: string

Value: 'Variable-step' | 'Fixed-step'
Default: 'Variable-step'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-18

Solver Pane

Application Setting
Efficiency No impact
Safety precaution Fixed-step
See Also
® Solvers

® Choosing a Solver

“Purely Discrete Systems”

Configuration Parameters Dialog Box

Solver Pane

1-19

1 Configuration Parameters Dialog Box

1-20

Solver

Select the solver you want to use to compute the model’s states during
simulation or code generation.

Settings
The available solvers change depending on which solver Type you selected:

¢ “Fixed-step Solvers” on page 1-20
® “Variable-step Solvers” on page 1-21

Fixed-step Solvers. Default: ode3 (Bogacki-Shampine)

ode3 (Bogacki-Shampine)
Computes the model’s state at the next time step as an explicit function
of the current value of the state and the state derivatives, using the
Bogacki-Shampine Formula integration technique to compute the state
derivatives. In the following example, X is the state, DX is the state
derivative, and h is the step size:

X(n+1) = X(n) + h * DX(n)

Discrete (no continuous states)
Computes the time of the next time step by adding a fixed step size
to the current time.

Use this solver for models with no states or discrete states only, using a
fixed step size. Relies on the model’s blocks to update discrete states.

The accuracy and length of time of the resulting simulation depends on
the size of the steps taken by the simulation: the smaller the step size,
the more accurate the results but the longer the simulation takes.

Note The fixed-step discrete solver cannot be used to simulate models
that have continuous states.

Solver Pane

ode8 (Dormand-Prince RK8(7))
Uses the eighth-order Dormand-Prince formula to compute the model
state at the next time step as an explicit function of the current value of
the state and the state derivatives approximated at intermediate points.

ode5 (Dormand-Prince)
Uses the fifth-order Dormand-Prince formula to compute the model
state at the next time step as an explicit function of the current value of
the state and the state derivatives approximated at intermediate points.

ode4 (Runge-Kutta)
Uses the fourth-order Runge-Kutta (RK4) formula to compute the model
state at the next time step as an explicit function of the current value of
the state and the state derivatives.

ode2 (Heun)
Uses the Heun integration method to compute the model state at the
next time step as an explicit function of the current value of the state
and the state derivatives.

odel (Euler)
Uses the Euler integration method to compute the model state at the
next time step as an explicit function of the current value of the state
and the state derivatives.

odel14x (extrapolation)
Uses a combination of Newton’s method and extrapolation from the
current value to compute the model’s state at the next time step, as an
implicit function of the state and the state derivative at the next time
step. In the following example, X is the state, DX is the state derivative,
and h is the step size:

X(n+1) - X(n) - h * DX(n+1) =0

This solver requires more computation per step than an explicit solver,
but is more accurate for a given step size.

Variable-step Solvers. Default: ode45 (Dormand-Prince)

ode45 (Dormand-Prince)
Computes the model’s state at the next time step using an explicit
Runge-Kutta (4,5) formula (the Dormand-Prince pair) for numerical
integration.

1-21

1 Configuration Parameters Dialog Box

1-22

ode45 is a one-step solver, and therefore only needs the solution at the
preceding time point.

Use ode45 as a first try for most problems.

Discrete (no continuous states)

Computes the time of the next step by adding a step size that varies
depending on the rate of change of the model’s states.

Use this solver for models with no states or discrete states only, using
a variable step size.

ode23 (Bogacki-Shampine)

Computes the model’s state at the next time step using an explicit
Runge-Kutta (2,3) formula (the Bogacki-Shampine pair) for numerical
integration.

ode23 is a one-step solver, and therefore only needs the solution at the
preceding time point.

0de23 is more efficient than ode45 at crude tolerances and in the
presence of mild stiffness.

ode113 (Adams)

Computes the model’s state at the next time step using a variable-order
Adams-Bashforth-Moulton PECE numerical integration technique.

ode113 is a multistep solver, and thus generally needs the solutions at
several preceding time points to compute the current solution.

ode113 can be more efficient than ode45 at stringent tolerances.

ode15s (stiff/NDF)

Computes the model’s state at the next time step using variable-order
numerical differentiation formulas (NDFs). These are related to, but
more efficient than the backward differentiation formulas (BDFs), also
known as Gear’s method.

ode15s is a multistep solver, and thus generally needs the solutions at
several preceding time points to compute the current solution.

Solver Pane

ode15s is efficient for stiff problems. Try this solver if ode45 fails or is
inefficient.

ode23s (stiff/Mod. Rosenbrock)

Computes the model’s state at the next time step using a modified
Rosenbrock formula of order 2.

ode23s is a one-step solver, and therefore only needs the solution at
the preceding time point.

ode23s is more efficient than ode15s at crude tolerances, and can solve
stiff problems for which ode15s is ineffective.

ode23t (Mod. stiff/Trapezoidal)

Computes the model’s state at the next time step using an
implementation of the trapezoidal rule with a “free” interpolant.

ode23t is a one-step solver, and therefore only needs the solution at
the preceding time point.

Use ode23t if the problem is only moderately stiff and you need a
solution with no numerical damping.

ode23tb (stiff/TR-BDF2)

Tips

Computes the model’s state at the next time step using a multistep
implementation of TR-BDF2, an implicit Runge-Kutta formula with a
trapezoidal rule first stage, and a second stage consisting of a backward
differentiation formula of order two. By construction, the same iteration
matrix is used in evaluating both stages.

ode23tb is more efficient than ode15s at crude tolerances, and can solve
stiff problems for which ode15s is ineffective.

¢ Identifying the optimal solver for a model requires experimentation, for an
in-depth discussion, see Choosing a Solver.

¢ The optimal solver balances acceptable accuracy with the shortest
simulation time.

1-23

1 Configuration Parameters Dialog Box

e Simulink software uses a discrete solver for any model with no states or
discrete states only, even if you specify a continuous solver.

¢ A smaller step size increases accuracy, but also increases simulation time.
® The degree of computational complexity increases for oden, as n increases.

* As computational complexity increases, the accuracy of the results also
increases.

Dependencies
Selecting the ode1 (Euler), ode2 (Huen), ode 3 (Bogacki-Shampine),

ode4 (Runge-Kutta), ode 5 (Dormand-Prince), or Discrete (no
continuous states) fixed-step solvers enables the following parameters:

¢ Fixed-step size (fundamental sample time)

¢ Periodic sample time constraint

Tasking mode for periodic sample times

Automatically handle rate transition for data transfers

Higher priority value indicates higher task priority
Selecting ode14x (extrapolation) enables the following parameters:

¢ Fixed-step size (fundamental sample time)

e Extrapolation order

¢ Number Newton’s iterations

¢ Periodic sample time constraint

¢ Tasking mode for periodic sample times

¢ Automatically handle rate transition for data transfers
e Higher priority value indicates higher task priority

Selecting the Discrete (no continuous states) variable-step solver
enables the following parameters:

* Max step size

1-24

Solver Pane

Automatically handle rate transition for data transfers
Higher priority value indicates higher task priority
Zero-crossing control

Time tolerance

Number of consecutive zero crossings

Algorithm

Selecting ode45 (Dormand-Prince), ode23 (Bogacki-Shampine), ode113
(Adams), or ode23s (stiff/Mod. Rosenbrock) enables the following
parameters:

Max step size

Min step size

Initial step size

Relative tolerance

Absolute tolerance

Shape preservation

Number of consecutive min steps

Automatically handle rate transition for data transfers
Higher priority value indicates higher task priority
Zero-crossing control

Time tolerance

Number of consecutive zero crossings

Algorithm

Selecting ode15s (stiff/NDF), ode23t (Mod. stiff/Trapezoidal), or
ode23tb (stiff/TR-BDF2) enables the following parameters:

Max step size

Min step size

1-25

1 Configuration Parameters Dialog Box

1-26

¢ Initial step size

® Solver reset method

e Number of consecutive min steps

* Relative tolerance

® Absolute tolerance

®* Shape preservation

¢ Maximum order

* Automatically handle rate transition for data transfers
¢ Higher priority value indicates higher task priority
e Zero-crossing control

* Time tolerance

e Number of consecutive zero crossings

* Algorithm

Command-Line Information

Parameter: Solver
Type: string

Value: 'VariableStepDiscrete' | 'ode45' | 'ode23' |

'ode113' | 'odel15s' | 'ode23s' | 'ode23t' | 'ode23tb' |
'FixedStepDiscrete' |'ode8'| 'ode5' | 'ode4' | 'ode3' | 'ode2'
| 'odel' | 'odel4x'

Default: 'ode45'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Discrete (no continuous states)

Solver Pane

See Also
e Solvers

® Choosing a Solver

“Purely Discrete Systems”

Configuration Parameters Dialog Box

Solver Pane

1-27

1 Configuration Parameters Dialog Box

1-28

Max step size
Specify the largest time step that the solver can take.

Settings
Default: auto

® For the discrete solver, the default value (auto) is the model’s shortest
sample time.

® For continuous solvers, the default value (auto) is determined from
the start and stop times. If the stop time equals the start time or is
inf, Simulink software chooses 0.2 seconds as the maximum step size.
Otherwise, it sets the maximum step size to

t tstart

.
Pna = =55

Tips

® Generally, the default maximum step size is sufficient. If you are concerned
about the solver missing significant behavior, change the parameter to
prevent the solver from taking too large a step.

e [If the time span of the simulation is very long, the default step size might
be too large for the solver to find the solution.

e If your model contains periodic or nearly periodic behavior and you know
the period, set the maximum step size to some fraction (such as 1/4) of
that period.

¢ In general, for more output points, change the refine factor, not the
maximum step size.

Dependencies
This parameter is enabled only if the solver Type is set to Variable-step.

Solver Pane

Command-Line Information

Parameter: MaxStep
Type: string

Value: any valid value
Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® “Purely Discrete Systems”
¢ Configuration Parameters Dialog Box

e Solver Pane

1-29

1 Configuration Parameters Dialog Box

1-30

Initial step size
Specify the size of the first time step that the solver takes.

Settings
Default: auto

By default, the solver selects an initial step size by examining the derivatives
of the states at the start time.

Tips
¢ Be careful when increasing the initial step size. If the first step size is too
large, the solver might step over important behavior.

¢ The initial step size parameter is a suggested first step size. The solver
tries this step size but reduces it if error criteria are not satisfied.

Dependencies
This parameter is enabled only if the solver Type is set to Variable-step.

Command-Line Information

Parameter: InitialStep
Type: string

Value: any valid value
Default: 'auto’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Solver Pane

See Also

“Purely Discrete Systems”
Improving Simulation Performance and Accuracy
Configuration Parameters Dialog Box

Solver Pane

1-31

1 Configuration Parameters Dialog Box

1-32

Min step size
Specify the smallest time step that the solver can take.

Settings
Default: auto

The default value (auto) sets an unlimited number of warnings and a
minimum step size on the order of machine precision.

You can specify either a real number greater than zero, or a two-element
vector for which the first element is the minimum step size and the second
element is the maximum number of minimum step size warnings before
an error was issued.

Tips

If the solver takes a smaller step to meet error tolerances, it issues a
warning indicating the current effective relative tolerance.

Setting the second element to zero results in an error the first time the
solver must take a step smaller than the specified minimum. This is
equivalent to changing the Min step size violation diagnostic to error on
the Diagnostics pane (see Min step size violation).

Setting the second element to -1 results in an unlimited number of
warnings. This is also the default if the input is a scalar.

Dependencies
This parameter is enabled only if the solver Type is set to Variable-step.

Command-Line Information

Parameter: MinStep
Type: string

Value: any valid value
Default: 'auto’

Solver Pane

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

® “Purely Discrete Systems”

* Min step size violation

¢ Configuration Parameters Dialog Box

e Solver Pane

1-33

1 Configuration Parameters Dialog Box

1-34

Relative tolerance

Specify the largest acceptable solver error, relative to the size of each state
during each time step. If the relative error exceeds this tolerance, the solver
reduces the time step size.

Settings
Default: 1e-3

e Setting the relative tolerance to auto is actually the default value of 1e-3.
¢ The relative tolerance is a percentage of the state’s value.

® The default value (1e-3) means that the computed state is accurate to
within 0.1%.

Tips

¢ The acceptable error at each time step is a function of both the Relative
tolerance and the Absolute tolerance. For more information about how
these settings work together, see Specifying Variable-Step Solver Error
Tolerances.

¢ During each time step, the solver computes the state values at the end of
the step and also determines the local error — the estimated error of these
state values. If the error is greater than the acceptable error for any state,
the solver reduces the step size and tries again.

¢ The default relative tolerance value is sufficient for most applications.
Decreasing the relative tolerance value can slow down the simulation.

¢ To check the accuracy of a simulation after you run it, you can reduce
the relative tolerance to le-4 and run it again. If the results of the two
simulations are not significantly different, you can feel confident that the
solution has converged.

Dependencies
This parameter is enabled only if you set:

e Solver Type to Variable-step.

Solver Pane

® Solver to a continuous variable-step solver.

This parameter works along with Absolute tolerance to determine the
acceptable error at each time step. For more information about how these
settings work together, see Specifying Variable-Step Solver Error Tolerances.

Command-Line Information

Parameter: RelTol
Type: string

Value: any valid value
Default: '1e-3'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

Specifying Variable-Step Solver Error Tolerances

¢ Improving Simulation Performance and Accuracy

Configuration Parameters Dialog Box

Solver Pane

1-35

1 Configuration Parameters Dialog Box

1-36

Absolute tolerance

Specify the largest acceptable solver error, as the value of the measured
state approaches zero. If the absolute error exceeds this tolerance, the solver
reduces the time step size.

Settings
Default: auto

The default value (auto) initially sets the absolute tolerance for each state
to le-6. As the simulation progresses, the absolute tolerance for each state
is reset to the maximum value that the state has thus far assumed times
the relative tolerance for that state.

For example, if a state goes from 0 to 1 and the Relative tolerance is le-3,
then by the end of the simulation, the Absolute tolerance is set to le-3.

If the computed setting is not suitable, you can determine an appropriate
setting yourself.

Tips

The acceptable error at each time step is a function of both the Relative
tolerance and the Absolute tolerance. For more information about how
these settings work together, see Specifying Variable-Step Solver Error
Tolerances.

The Integrator, Second-Order Integrator, Variable Transport Delay,
Transfer Fcn, State-Space, and Zero-Pole blocks allow you to specify
absolute tolerance values for solving the model states that they compute
or that determine their output. The absolute tolerance values that you
specify in these blocks override the global setting in the Configuration
Parameters dialog box.

You might want to override the Absolute tolerance setting using blocks if
the global setting does not provide sufficient error control for all of your
model states, for example, if they vary widely in magnitude.

If you set the Absolute tolerance too low, the solver might take too many
steps around near-zero state values, and thus slow the simulation.

Solver Pane

® To check the accuracy of a simulation after you run it, you can reduce the
absolute tolerance and run it again. If the results of the two simulations

are not significantly different, you can feel confident that the solution

has converged.

¢ If your simulation results do not seem accurate, and your model has states
whose values approach zero, the Absolute tolerance may be too large.
Reduce the Absolute tolerance to force the simulation to take more steps
around areas of near-zero state values.

Dependencies

This parameter is enabled only if you set:

e Solver Type to Variable-step.

¢ Solver to a continuous variable-step solver.

This parameter works along with Relative tolerance to determine the
acceptable error at each time step. For more information about how these

settings work together, see Specifying Variable-Step Solver Error Tolerances.

Command-Line Information for Configuration Parameters

Parameter: AbsTol

Type: string | numeric value
Value: 'auto' | positive real
Default: 'auto’

Recommended Settings

scalar

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

1-37

1 Configuration Parameters Dialog Box

See Also

® Specifying Variable-Step Solver Error Tolerances
¢ Improving Simulation Performance and Accuracy
¢ Configuration Parameters Dialog Box

e Solver Pane

1-38

Solver Pane

Shape preservation

At each time step use derivative information to improve integration accuracy.

Settings
Default: Disable all

Disable all
Do not perform Shape preservation on any signals.

Enable all
Perform Shape preservation on all signals.

Tips

¢ The default setting (Disable all) usually provides good accuracy for most
models.

e Setting to Enable all will increase accuracy in those models having
signals whose derivative exhibits a high rate of change, but simulation
time may be increased.

Dependencies
This parameter is enabled only if you use a continuous-step solver.

Command-Line Information

Parameter: ShapePreserveControl
Type: string

Value: 'EnableAll | 'DisableAll
Default: 'DisableAll

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-39

Configuration Parameters Dialog Box

1-40

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

e “Zero-Crossing Detection”

e Solver Pane

Solver Pane

Maximum order

Select the order of the numerical differentiation formulas (NDFs) used in
the ode15s solver.

Settings
Default: 5

5
Specifies that the solver uses fifth order NDF's.

Specifies that the solver uses first order NDFs.

2

Specifies that the solver uses second order NDFs.
3

Specifies that the solver uses third order NDFs.
4

Specifies that the solver uses fourth order NDFs.
Tips

e Although the higher order formulas are more accurate, they are less stable.

¢ [f your model is stiff and requires more stability, reduce the maximum
order to 2 (the highest order for which the NDF formula is A-stable).

® As an alternative, you can try using the ode23s solver, which is a lower
order (and A-stable) solver.

Dependencies
This parameter is enabled only if Solver is set to ode15s.

1-41

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: MaxOrder
Type: integer

Value: 12345
Default: 5

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

¢ Specifying Variable-Step Solver Error Tolerances
¢ Improving Simulation Performance and Accuracy
¢ Configuration Parameters Dialog Box

e Solver Pane

1-42

Solver Pane

Solver reset method

Select how the solver behaves during a reset, such as when it detects a zero
crossing.

Settings
Default: Fast

Fast

Specifies that the solver will not recompute the Jacobian matrix at a
solver reset.

Robust
Specifies that the solver will recompute the Jacobian matrix needed by
the integration step at every solver reset.

Tips
e Selecting Fast speeds up the simulation. However, it can result in incorrect
solutions in some cases.

® [fyou suspect that the simulation is giving incorrect results, try the Robust
setting. If there is no difference in simulation results between the fast and
robust settings, revert to the fast setting.

Dependencies

This parameter is enabled only if you select one of the following solvers:
® ode15s (Stiff/NDF)

® 0de23t (Mod. Stiff/Trapezoidal)

® 0de23tb (Stiff/TR-BDF2)

Command-Line Information

Parameter: SolverResetMethod
Type: string

Value: 'Fast' | 'Robust'
Default: 'Fast'

1-43

1 Configuration Parameters Dialog Box

1-44

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

¢ Choosing a Solver

¢ Configuration Parameters Dialog Box

e Solver Pane

Solver Pane

Number of consecutive min steps

Specify the maximum number of consecutive minimum step size violations
allowed during simulation.

Settings
Default: 1

* A minimum step size violation occurs when a variable-step continuous
solver takes a smaller step than that specified by the Min step size
property (see Min step size).

¢ Simulink software counts the number of consecutive violations that it
detects. If the count exceeds the value of Number of consecutive min
steps, Simulink software displays either a warning or error message as
specified by the Min step size violation diagnostic (see Min step size
violation).

Dependencies
This parameter is enabled only if you set:
e Solver Type to Variable-step.

¢ Solver to a continuous variable step solver.

Command-Line Information

Parameter: MaxConsecutiveMinStep
Type: string

Value: any valid value

Default: '1'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-45

1 Configuration Parameters Dialog Box

1-46

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

Choosing a Solver

Min step size violation

Min step size

Configuration Parameters Dialog Box

Solver Pane

Solver Pane

Solver Jacobian Method

Settings

Default: Auto

auto

Sparse perturbation
Full perturbation
Sparse analytical

Full analytical

Tips

® The default setting (Auto) usually provides good accuracy for most models.

Dependencies
This parameter is enabled only if an implicit solver is used.

Command-Line Information

Parameter: SolverJdacobianMethodControl

Type: string

Value: 'auto' | 'SparsePerturbation']|'FullPerturbation' |
'SparseAnalytical' | 'FullAnalytical'

Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

1-47

1 Configuration Parameters Dialog Box

See Also

® “Choose a Solver”

e Solver Pane

1-48

Solver Pane

Tasking mode for periodic sample times

Select how blocks with periodic sample times execute.

Settings
Default: Auto

Auto
Specifies that single-tasking execution is used if:

® Your model contains one sample time.

® Your model contains a continuous and a discrete sample time, and
the fixed-step size is equal to the discrete sample time.

Selects multitasking execution for models operating at different sample
rates.

SingleTasking
Specifies that all blocks are processed through each stage of simulation
together (for example, calculating output and updating discrete states).

MultiTasking
Specifies that groups of blocks with the same execution priority
are processed through each stage of simulation (for example,
calculating output and updating discrete states) based on task
priority. Multitasking mode helps to create valid models of real-world
multitasking systems, where sections of your model represent
concurrent tasks.

Tips

¢ For multirate models, Simulink treats an Auto setting as a MultiTasking
setting.

* A model that is multirate and uses multitasking (that is, uses a setting
of Auto or MultiTasking) cannot reference a multirate model that uses
a SingleTasking setting.

® The Multitask rate transition parameter on the Diagnostics > Sample
Time pane allows you to adjust error checking for sample rate transitions
between blocks that operate at different sample rates.

1-49

1 Configuration Parameters Dialog Box

Dependency

This parameter is enabled by selecting Fixed-step solver type.

Command-Line Information

Parameter: SolverMode

Type: string

Value: 'Auto' | 'SingleTasking' | 'MultiTasking'
Default: 'Auto’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

¢ Rate Transition block

® “Model Execution and Rate Transitions”

e “Single-Tasking and Multitasking Execution Modes”

¢ “Handle Rate Transitions”

® “Single-Tasking and Multitasking Model Execution”

e “Configuration Parameters Dialog Box Overview” on page 1-3

e “Solver Pane” on page 1-9

1-50

Solver Pane

Automatically handle rate transition for data transfer

Specify whether Simulink software automatically inserts hidden Rate
Transition blocks between blocks that have different sample rates to ensure:
the integrity of data transfers between tasks; and optional determinism of
data transfers for periodic tasks.

Settings
Default: Off

¥ On
Inserts hidden Rate Transition blocks between blocks when rate
transitions are detected. Handles rate transitions for asynchronous and
periodic tasks. Simulink software adds the hidden blocks configured
to ensure data integrity for data transfers. Selecting this option also
enables the parameter Deterministic data transfer, which allows you
to control the level of data transfer determinism for periodic tasks.

" o
Does not insert hidden Rate Transition blocks when rate transitions are
detected. If Simulink software detects invalid transitions, you must
adjust the model such that the sample rates for the blocks in question
match or manually add a Rate Transition block.

See Rate Transition Block Options in the Simulink Coder™ documentation
for further details.

Tips

e Selecting this parameter allows you to handle rate transition issues
automatically. This saves you from having to manually insert Rate
Transition blocks to avoid invalid rate transitions, including invalid
asynchronous-to-periodic and asynchronous-to-asynchronous rate
transitions, in multirate models.

¢ For asynchronous tasks, Simulink software configures the inserted blocks
to ensure data integrity but not determinism during data transfers.

1-51

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: AutoInsertRateTranBlk
Type: string

Value: 'on' | 'off!'

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact (for simulation and during
development)
Off (for production code generation)

Efficiency No impact

Safety precaution Off

See Also

¢ Rate Transition Block Options
¢ Configuration Parameters Dialog Box

e Solver Pane

1-52

Solver Pane

Deterministic data transfer

Control whether the Rate Transition block parameter Ensure deterministic
data transfer (maximum delay) is set for auto-inserted Rate Transition
blocks

Default: Whenever possible

Always
Specifies that the block parameter Ensure deterministic data
transfer (maximum delay) is always set for auto-inserted Rate
Transition blocks.

If Always is selected and if a model needs to auto-insert a Rate
Transition block to handle a rate transition that is not between two
periodic sample times related by an integer multiple, Simulink errors
out.

Whenever possible
Specifies that the block parameter Ensure deterministic data
transfer (maximum delay) is set for auto-inserted Rate Transition
blocks whenever possible. If an auto-inserted Rate Transition block
handles data transfer between two periodic sample times that are
related by an integer multiple, Ensure deterministic data transfer
(maximum delay) is set; otherwise, it is cleared.

Never (minimum delay)
Specifies that the block parameter Ensure deterministic data
transfer (maximum delay) is never set for auto-inserted Rate
Transition blocks.

Note Clearing the Rate Transition block parameter Ensure deterministic
data transfer (maximum delay) can provide reduced latency for

models that do not require determinism. See the description of Ensure
deterministic data transfer (maximum delay) on the Rate Transition
block reference page for more information.

1-53

1 Configuration Parameters Dialog Box

Dependencies

This parameter is enabled only if Automatically handle rate transition
for data transfer is checked.

Command-Line Information

Parameter: InsertRTBMode

Type: string

Value: 'Always' | 'Whenever possible'| 'Never (minimum delay)'
Default: 'Whenever possible'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution 'Whenever possible'
See Also

e Rate Transition Block Options
¢ Configuration Parameters Dialog Box

e Solver Pane

1-54

Solver Pane

Higher priority value indicates higher task priority
Specify whether the real-time system targeted by the model assigns higher

or lower priority values to higher priority tasks when implementing
asynchronous data transfers

Settings
Default: Off

¥ On
Real-time system assigns higher priority values to higher priority tasks,
for example, 8 has a higher task priority than 4. Rate Transition blocks
treat asynchronous transitions between rates with lower priority values
and rates with higher priority values as low-to-high rate transitions.

I off
Real-time system assigns lower priority values to higher priority tasks,
for example, 4 has a higher task priority than 8. Rate Transition blocks
treat asynchronous transitions between rates with lower priority values
and rates with higher priority values as high-to-low rate transitions.

Command-Line Information

Parameter: PositivePriorityOrder
Type: string

Value: 'on' | 'off!'

Default: 'off"

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

1-55

1 Configuration Parameters Dialog Box

See Also

e “Rate Transitions and Asynchronous Blocks”
¢ Configuration Parameters Dialog Box

e Solver Pane

1-56

Solver Pane

Zero-crossing control

Enables zero-crossing detection during variable-step simulation of the model.
For most models, this speeds up simulation by enabling the solver to take
larger time steps.

Settings
Default: Use local settings

Use local settings
Specifies that zero-crossing detection be enabled on a block-by-block
basis. For a list of applicable blocks, see “Simulating Dynamic Systems”

To specify zero-crossing detection for one of these blocks, open the
block’s parameter dialog box and select the Enable zero-crossing
detection option.

Enable all
Enables zero-crossing detection for all blocks in the model.

Disable all
Disables zero-crossing detection for all blocks in the model.

Tips
* For most models, enabling zero-crossing detection speeds up simulation by
allowing the solver to take larger time steps.

¢ If a model has extreme dynamic changes, disabling this option can speed
up the simulation but can also decrease the accuracy of simulation results.
See Zero-crossing Detection for more information.

e Selecting Enable all or Disable all overrides the local zero-crossing
detection setting for individual blocks.

Dependencies
This parameter is enabled only if the solver Type is set to Variable-step.

Selecting either Use local settings or Enable all enables the following
parameters:

1-57

1 Configuration Parameters Dialog Box

¢ Time tolerance
e Number of consecutive zero crossings

* Algorithm

Command-Line Information

Parameter: ZeroCrossControl

Type: string

Value: 'UselLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UseLocalSettings'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Zero-Crossing Detection

e Number of consecutive zero crossings
® Consecutive zero-crossings violation
* Time tolerance

¢ Configuration Parameters Dialog Box

e Solver Pane

1-58

Solver Pane

Time tolerance

Specify a tolerance factor that controls how closely zero-crossing events must
occur to be considered consecutive.

Settings
Default: 10*128*eps

¢ Simulink software defines zero crossings as consecutive if the time between
events is less than a particular interval. The following figure depicts a
simulation timeline during which Simulink software detects zero crossings
ZC, and ZC,, bracketed at successive time steps t, and t,,.

e at

i i
zc, zZc,
1 1 .
L'A L'J "

Simulink software determines that the zero crossings are consecutive if

dt < RelTolZC * t,

where dt is the time between zero crossings and RelTolZC is the Time
tolerance.

¢ Simulink software counts the number of consecutive zero crossings that it
detects. If the count exceeds the value of Number of consecutive zero
crossings allowed, Simulink software displays either a warning or error
as specified by the Consecutive zero-crossings violation diagnostic (see
Consecutive zero-crossings violation).

Tips

¢ Simulink software resets the counter each time it detects nonconsecutive
zero crossings (successive zero crossings that fail to meet the relative
tolerance setting); therefore, decreasing the relative tolerance value may
afford your model’s behavior more time to recover.

1-59

1 Configuration Parameters Dialog Box

¢ If your model experiences excessive zero crossings, you can also increase
the Number of consecutive zero crossings to increase the threshold
at which Simulink software triggers the Consecutive zero-crossings
violation diagnostic.

Dependencies

This parameter is enabled only if Zero-crossing control is set to either
Use local settings or Enable all.

Command-Line Information

Parameter: ConsecutiveZCsStepRelTol
Type: string

Value: any valid value

Default: '10*128*eps"

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Zero-crossing Detection

® Zero-crossing Control

¢ Number of consecutive zero crossings
¢ Consecutive zero-crossings violation
¢ Configuration Parameters Dialog Box

e Solver Pane

1-60

Solver Pane

Number of consecutive zero crossings

Specify the number of consecutive zero crossings that can occur before
Simulink software displays a warning or an error.

Settings
Default: 1000

Simulink software counts the number of consecutive zero crossings that
it detects. If the count exceeds the specified value, Simulink software
displays either a warning or an error as specified by the Consecutive
zero-crossings violation diagnostic (see Consecutive zero-crossings
violation).

Simulink software defines zero crossings as consecutive if the time between
events is less than a particular interval (see Time tolerance).

Tips

If your model experiences excessive zero crossings, you can increase this
parameter to increase the threshold at which Simulink software triggers
the Consecutive zero-crossings violation diagnostic. This may afford
your model’s behavior more time to recover.

Simulink software resets the counter each time it detects nonconsecutive
zero crossings; therefore, decreasing the relative tolerance value may also
afford your model’s behavior more time to recover.

Dependencies

This parameter is enabled only if Zero-crossing control is set to either
Use local settings or Enable all.

Command-Line Information

Parameter: MaxConsecutiveZCs
Type: string

Value: any valid value

Default: '1000'

1-61

1 Configuration Parameters Dialog Box

1-62

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

e Zero-Crossing Detection

e Zero-Crossing Control

® Consecutive zero-crossings violation

e Time tolerance

¢ Configuration Parameters Dialog Box

e Solver Pane

Solver Pane

Algorithm

Specifies the algorithm to detect zero crossings when a variable-step solver
is used.

Settings
Default: Nonadaptive

Adaptive
Use an improved zero-crossing algorithm which dynamically activates
and deactivates zero-crossing bracketing. With this algorithm you can
set a zero-crossing tolerance. See “Signal threshold” on page 1-65 to
learn how to set the zero-crossing tolerance.

Nonadaptive
Use the nonadaptive zero-crossing algorithm present in the
Simulink software prior to Version 7.0 (R2008a). This option detects
zero-crossings accurately, but might cause longer simulation run times
for systems with strong “chattering” or Zeno behavior.

Tips

¢ The adaptive zero-crossing algorithm is especially useful in systems
having strong “chattering”, or Zeno behavior. In such systems, this
algorithm yields shorter simulation run times compared to the nonadaptive
algorithm. See Zero-Crossing Detection for more information.

Dependencies

¢ This parameter is enabled only if the solver Type is set to Variable-step.

e Selecting Adaptive enables the Signal threshold parameter.

Command-Line Information

Parameter: ZeroCrossAlgorithm
Type: string

Value: 'Nonadaptive' | 'Adaptive’
Default: 'Nonadaptive'

1-63

1 Configuration Parameters Dialog Box

1-64

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

e Zero-Crossing Detection

e Number of consecutive zero crossings

® Consecutive zero-crossings violation

e Time tolerance

¢ Configuration Parameters Dialog Box

e Solver Pane

Solver Pane

Signal threshold

Specifies the deadband region used during the detection of zero crossings.

Signals falling within this region are defined as having crossed through zero.

The signal threshold is a real number, greater than or equal to zero.

Settings
Default: Auto

Auto
The signal threshold is determined automatically by the adaptive
algorithm.

String
Use the specified value for the signal threshold. The value must be a
real number equal to or greater than zero.

Tips
¢ Entering too small of a value for the Signal Threshold parameter will
result in long simulation run times.

¢ Entering a large Signal Threshold value may improve the simulation
speed (especially in systems having extensive chattering). However,
making the value too large may reduce the simulation accuracy.

Dependency

This parameter is enabled if the zero-crossing Algorithm is set to Adaptive.

Command-Line Information

Parameter: ZCThreshold

Type: string

Value: 'auto' | any real number greater than or equal to zero
Default: 'auto’

1-65

1 Configuration Parameters Dialog Box

1-66

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

e Zero-Crossing Detection

e Number of consecutive zero crossings

® Consecutive zero-crossings violation

e Time tolerance

¢ Configuration Parameters Dialog Box

e Solver Pane

Solver Pane

Periodic sample time constraint

Select constraints on the sample times defined by this model. If the model
does not satisfy the specified constraints during simulation, Simulink
software displays an error message.

Settings
Default: Unconstrained

Unconstrained
Specifies no constraints. Selecting this option causes Simulink software
to display a field for entering the solver step size.

Use the Fixed-step size (fundamental sample time) option to
specify solver step size.

Ensure sample time independent
Specifies that Model blocks inherit sample time from the context in
which they are used. You cannot use a referenced model that has
intrinsic sample times in a triggered subsystem or iterator subsystem. If
you plan on referencing this model in a triggered or iterator subsystem,
you should select Ensure sample time independent so that Simulink
can detect sample time problems while unit testing this model.

e Model Block Sample Times
¢ Inherited Sample Time for Referenced Models
¢ “Function-Call Models”

Simulink software checks to ensure that this model can inherit its
sample times from a model that references it without altering its
behavior. Models that specify a step size (i.e., a base sample time)
cannot satisfy this constraint. For this reason, selecting this option
causes Simulink software to hide the group’s step size field (see
Fixed-step size (fundamental sample time)).

Specified
Specifies that Simulink software check to ensure that this model
operates at a specified set of prioritized periodic sample times. Use
the Sample time properties option to specify and assign priorities to
model sample times.

1-67

1 Configuration Parameters Dialog Box

Executing Multitasking Models explains how to use this option for
multitasking models.

Tips

During simulation, Simulink software checks to ensure that the model
satisfies the constraints. If the model does not satisfy the specified constraint,
then Simulink software displays an error message.

Dependencies
This parameter is enabled only if the solver Type is set to Fixed-step.

Selecting Unconstrained enables the following parameters:

¢ Fixed-step size (fundamental sample time)
¢ Tasking mode for periodic sample times
¢ Higher priority value indicates higher task priority

¢ Automatically handle rate transitions for data transfers

Selecting Specified enables the following parameters:

Sample time properties

¢ Tasking mode for periodic sample times

Higher priority value indicates higher task priority

Automatically handle rate transitions for data transfers

Command-Line Information

Parameter: SampleTimeConstraint

Type: string

Value: 'unconstrained' | 'STIndependent' | 'Specified’
Default: 'unconstrained'’

1-68

Solver Pane

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

Specified or Ensure sample time
independent

See Also

e Model Block Sample Times

¢ Inherited Sample Time for Referenced Models

e “Function-Call Models”

* Fixed-step size (fundamental sample time)

¢ Executing Multitasking Models

¢ Configuration Parameters Dialog Box

e Solver Pane

1-69

1 Configuration Parameters Dialog Box

1-70

Fixed-step size (fundamental sample time)
Specify the step size used by the selected fixed-step solver.

Settings
Default: auto

¢ Entering auto (the default) in this field causes Simulink software to choose
the step size.

¢ [f the model specifies one or more periodic sample times, Simulink software
chooses a step size equal to the greatest common divisor of the specified
sample times. This step size, known as the fundamental sample time of
the model, ensures that the solver will take a step at every sample time
defined by the model.

e If the model does not define any periodic sample times, Simulink software
chooses a step size that divides the total simulation time into 50 equal steps.

e If the model specifies no periodic rates and the stop time is Inf, Simulink
uses 0.2 as the step size.

Dependencies

This parameter is enabled only if the Periodic sample time constraint is
set to Unconstrained.

Command-Line Information

Parameter: FixedStep
Type: string

Value: any valid value
Default: 'auto'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Solver Pane

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

® Modeling Dynamic Systems

¢ Configuration Parameters Dialog Box

e Solver Pane

1-71

1 Configuration Parameters Dialog Box

Sample time properties
Specify and assign priorities to the sample times that this model implements.

Settings

No Default

¢ Enter an Nx3 matrix with rows that specify the model’s discrete sample
time properties in order from fastest rate to slowest rate.

¢ Faster sample times must have higher priorities.

Format.

[period, offset, priority]

period The time interval (sample rate) at which updates occur
during the simulation.

offset A time interval indicating an update delay. The block
is updated later in the sample interval than other blocks
operating at the same sample rate.

priority Execution priority of the real-time task associated with
the sample rate.

See Specifying Sample Time for more details and options for specifying
sample time.

Example.

[fo.1, o, 101; 0.2, 0, 11]; [0.3, 0, 12]]

Declares that the model should specify three sample times.

Sets the fundamental sample time period to 0.1 second.

® Assigns priorities of 10, 11, and 12 to the sample times.

Assumes higher priority values indicate lower priorities — the Higher
priority value indicates higher task priority option is not selected.

1-72

Solver Pane

Tips

e If the model’s fundamental rate differs from the fastest rate specified by
the model, specify the fundamental rate as the first entry in the matrix
followed by the specified rates, in order from fastest to slowest. See “Purely
Discrete Systems”.

¢ [f the model operates at one rate, enter the rate as a three-element vector
in this field — for example, [0.1, 0, 10].

® When you update a model, Simulink software displays an error message if
what you specify does not match the sample times defined by the model.

e If Periodic sample time constraint is set to Unconstrained, Simulink
software assigns priority 40 to the model base sample rate. If Higher
priority value indicates higher task priority is selected, Simulink
software assigns priorities 39, 38, 37, and so on, to subrates of the base
rate. Otherwise, it assigns priorities 41, 42, 43, and so on, to the subrates.

e Continuous rate is assigned a higher priority than is the discrete base rate
regardless of whether Periodic sample time constraint is Specified or
Unconstrained.

Dependencies

This parameter is enabled by selecting Specified from the Periodic sample
time constraint list.

1-73

1 Configuration Parameters Dialog Box

1-74

Command-Line Information

Parameter: SampleTimeProperty

Type: structure
Value: any valid matrix
Default: []

Note If you specify SampleTimeProperty at the command line, you must
enter the sample time properties as a structure with the following fields:

® SampleTime
® Offset

® Priority

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

Period, offset, and priority of each sample
time in the model; faster sample times
must have higher priority than slower
sample times

See Also

® “Purely Discrete Systems”

¢ Specifying Sample Time

¢ Configuration Parameters Dialog Box

e Solver Pane

Solver Pane

Extrapolation order

Select the extrapolation order used by the ode14x solver to compute a model’s
states at the next time step from the states at the current time step.

Settings
Default: 4

Specifies first order extrapolation.

2

Specifies second order extrapolation.
3

Specifies third order extrapolation.
4

Specifies fourth order extrapolation.
Tip

Selecting a higher order produces a more accurate solution, but is more
computationally intensive per step size.

Dependencies

This parameter is enabled by selecting ode14x (extrapolation) from the
Solver list.

Command-Line Information

Parameter: ExtrapolationOrder
Type: integer
Value: 1 |2 | 3| 4

Default: 4

1-75

1 Configuration Parameters Dialog Box

1-76

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

® Choosing a Fixed-Step Solver

¢ Configuration Parameters Dialog Box

e Solver Pane

Solver Pane

Number Newton’s iterations
Specify the number of Newton’s method iterations used by the ode14x solver

to compute a model’s states at the next time step from the states at the

current time step.

Settings

Default: 1

Minimum: 1
Maximum: 2147483647

More iterations produce a more accurate solution, but are more

computationally intensive per step size.

Dependencies

This parameter is enabled by selecting ode14x (extrapolation) from the

Solver list.

Command-Line Information

Parameter: NumberNewtonIterations

Type: integer
Value: any valid number
Default: 1

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

1-77

1 Configuration Parameters Dialog Box

See Also

® Choosing a Fixed-Step Solver
¢ Configuration Parameters Dialog Box
® Solver Pane

e “Purely Discrete Systems”

1-78

Solver Pane

Allow tasks to execute concurrently on target
Enable concurrent tasking behavior for model.

Settings
Default: On
0 On

Enable the model to be configured for concurrent tasking.

™ ofr

Disable the model from being configured for concurrent tasking.
Tip.
o [f the referenced mode has a single rate, you do not need to select this
check box to enable concurrent tasking behavior.
* To remove this parameter, in the Model Explorer right-click and select

Configuration > Hide Concurrent Execution options.

Dependencies. This parameter check box is visible only if you convert an
existing configuration set to one for concurrent execution. To enable this
parameter, in the Model Explorer hierarchy pane, right-click and select
Configuration > Show Concurrent Execution options. The Dialog pane
is displayed with the Allow tasks to execute concurrently on target
check box and a Configure Tasks button.

e If this parameter check box is selected when you click the Configure
Tasks button, the Concurrent Execution dialog box is displayed.

e If this parameter check box is cleared, the following parameters are
enabled:

= Periodic sample time constraint
= Tasking mode for periodic sample times
= Automatically handle rate transition for data transfer

= Higher priority value indicates higher task priority

1-79

1 Configuration Parameters Dialog Box

* To make this parameter check box and button visible with the
command-line information, set the EnableConcurrentExecutionto 'on"'.
By default, this parameter is set to 'off'.

Command-Line Information

Parameter: ConcurrentTasks
Type: string

Value: 'on' | 'off!'
Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution 0.0

See Also

¢ “Concurrent Execution Window: Main Pane” on page 6-2
¢ Configuration Parameters Dialog Box

e Solver Pane

1-80

Data Import/Export Pane

Data Import/Export Pane

i:‘io\) Configuration Parameters: vdp/Configuration (Active) @
Select: Load from workspace |-
Solver "
Input: Edit Input
Data Import/Export = e B
> Optimization [Tl mnitial state: |[]
> Diagnostics

Hardware Implementation
Model Referencing
> Simulation Target Time, State, Output
» Code Generation

Save to workspace

[7] Time: tout Format: Array -

[[] states: xout [7] Limit data points to last: | 1000

[Output: yout Decimation: 1

[7] Final states: xFinal Save complete SimState in final state E
Signals

Signal logging: logsout Signal logging format:

[Configure Signals to Log...

Data Store Memary

Data stores: dsmout

Save options

Output options: |Refine output - | Refine factor: 1

[T] save simulation output as single object |out

[”] Record and inspect simulation output

s.)' [oK][Cancel H Help Apply

In this section...

“Data Import/Export Overview” on page 1-83
“Input” on page 1-84

“Initial state” on page 1-86

“Time” on page 1-88

“States” on page 1-90

1-81

1 Configuration Parameters Dialog Box

1-82

In this section...

“Output” on page 1-92

“Final states” on page 1-94

“Format” on page 1-96

“Limit data points to last” on page 1-98

“Decimation” on page 1-100

“Save complete SimState in final state” on page 1-102
“Signal logging” on page 1-104

“Signal logging format” on page 1-107

“Data stores” on page 1-110

“Output options” on page 1-112

“Refine factor” on page 1-114

“Output times” on page 1-116

“Save simulation output as single object” on page 1-117

“Record and inspect simulation output” on page 1-120

Data Import/Export Pane

Data Import/Export Overview

The Data Import/Export pane allows you to import input signal and initial
state data from a workspace and export output signal and state data to the
MATLAB® workspace during simulation. This capability allows you to use
standard or custom MATLAB functions to generate a simulated system’s input
signals and to graph, analyze, or otherwise postprocess the system’s outputs.

Configuration

1 Specify the data to load from a workspace before simulation begins.

2 Specify the data to save to the MATLAB workspace after simulation
completes.

Tips

® To open the Data Import/Export pane, in the Simulink Editor,
select Simulation > Model Configuration Parameters > Data
Import/Export.

¢ For more information importing and exporting data, see “Import Data”
and “Export Runtime Information”.

¢ See the documentation of the sim command for some capabilities that are
available only for programmatic simulation.

See Also

® Importing Data from a Workspace

¢ “Export Simulation Data”

¢ “Export Signal Data Using Signal Logging”
¢ Configuration Parameters Dialog Box

¢ Data Import/Export Pane

1-83

1 Configuration Parameters Dialog Box

1-84

Input

Loads input data from a workspace before the simulation begins.

Settings
Default: Off, [t,u]
v On
Loads data from a workspace.
Specify a MATLAB expression for the data to be imported from a

workspace. The Simulink software resolves symbols used in this
specification as described in “Symbol Resolution”.

See “Import Data to Root-Level Input Ports” for information on how
to use this field.
I off

Does not load data from a workspace.

Tips

® You must select the Input check box before entering input data.

¢ Simulink software linearly interpolates or extrapolates input values as
necessary if the Interpolate data option is selected for the corresponding
Inport.

® The use of the Input box is independent of the setting of the Format list
on the Data Import/Export pane.

Data Import/Export Pane

Command-Line Information

Parameter: LoadExternalInput
Type: string

Value: 'on' | 'off'

Default: 'off'

Parameter: Externallnput
Type: string

Value: any valid value
Default: '[t,u]’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

¢ “‘Import Data to Root-Level Input Ports”
¢ Configuration Parameters Dialog Box

¢ Data Import/Export Pane

1-85

1 Configuration Parameters Dialog Box

1-86

Initial state
Loads the model’s initial states from a workspace before simulation begins.

Settings
Default: Off, xInitial
v On

Simulink software loads initial states from a workspace.

Specify the name of a variable that contains the initial state values, for
example, a variable containing states saved from a previous simulation.

Use the structure or structure-with-time option to specify initial states
if you want to accomplish any of the following:

® Associate initial state values directly with the full path name to the
states. This eliminates errors that could occur if Simulink software
reorders the states, but the initial state array is not correspondingly
reordered.

® Assign a different data type to each state’s initial value.

¢ Initialize only a subset of the states.

See “Import and Export States” for more information.

I off

Simulink software does not load initial states from a workspace.

Tips

® You must select the Initial state check box before entering initial state
data.

® The initial values that the workspace variable specifies override the initial
values that the model specifies (the values that the initial condition
parameters of those blocks in the model that have states specify).

e Use either the structure format or structure-with-time format to initialize
the states of a top model and the models that it references.

Data Import/Export Pane

® Selecting the Initial state check box does not result in Simulink
initializing discrete states in referenced models.

Command-Line Information

Parameter: LoadInitialState
Type: string

Value: 'on' | 'off!'

Default: 'off'

Parameter: InitialState
Type: variable (string) or vector
Value: any valid value
Default: 'xInitial'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

¢ Importing Data from a Workspace
* “Import and Export States”
¢ Configuration Parameters Dialog Box

® Data Import/Export Pane

1-87

1 Configuration Parameters Dialog Box

1-88

Time

Saves simulation time data to the specified variable during simulation.

Settings
Default: On, tout

I7On

Simulink software exports time data to the MATLAB workspace during
simulation.

Specify the name of the MATLAB variable used to store time data. See
“Export Simulation Data” for more information.

" o
Simulink software does not export time data to the MATLAB workspace
during simulation.

Tips

® You must select the Time check box before entering the time variable.

® Simulink software saves the output to the MATLAB workspace at the base
sample rate of the model. Use a To Workspace block if you want to save
output at a different sample rate.

¢ The Time, State, Output area includes parameters for specifying a limit
on the number of data points to export and the decimation factor.

Command-Line Information

Parameter: SaveTime
Type: string

Value: 'on' | 'off!'
Default: 'on'

Parameter: TimeSaveName
Type: string

Value: any valid value
Default: 'tout'

Data Import/Export Pane

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact for simulation and during
development
Off for production code generation

See Also

¢ “Export Simulation Data”

¢ Configuration Parameters Dialog Box

® Data Import/Export Pane

1-89

1 Configuration Parameters Dialog Box

States
Saves state data to the specified MATLAB variable during a simulation.

Settings
Default: Off, xout
V' on
Simulink software exports state data to the MATLAB workspace during

simulation.

Specify the name of the MATLAB variable used to store state data. See
Importing and Exporting States for more information.

I off

Simulink does not export state data during simulation.
Tips

® You must select the States check box before entering the states variable.

* Simulink saves the states in a MATLAB workspace variable having the
specified name.

® The saved data has the format that you specify with the Format parameter.
e If you select the States check box, Simulink does not log fixed-point states.

e Simulink creates empty variables for state logging (xout) if both of these
conditions apply:

= You enable States.

= A model has no states.

See “Import and Export States” for more information.

1-90

Data Import/Export Pane

Command-Line Information

Parameter: SaveState
Type: string

Value: 'on' | 'off!'
Default: 'off'

Parameter: StateSaveName
Type: string

Value: any valid value
Default: 'xout'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

¢ Importing and Exporting States
e “Techniques for Importing Signal Data”
¢ Configuration Parameters Dialog Box

¢ Data Import/Export Pane

1-91

1 Configuration Parameters Dialog Box

1-92

Output

Saves signal data to the specified MATLAB variable during simulation.

Settings
Default: On, yout

¥ On
Simulink software exports signal data to the MATLAB workspace
during simulation.

Specify the name of the MATLAB variable used to store signal data. See
“Export Simulation Data” for more information.

I off

Simulink software does not export signal data during simulation.

Tips

® You must select the Output check box before entering the output variable.

¢ Simulink software saves the output to the MATLAB workspace at the base
sample rate of the model. Use a To Workspace block if you want to save
output at a different sample rate.

¢ The Time, State, Output area includes parameters for specifying the
format and other characteristics of the saved data (for example, the format
for the saved data and the decimation factor).

e [f you select the Output check box, Simulink logs fixed-point data as
double. To log fixed-point data, consider using one of these approaches:

Signal logging — Right-click the signal and in the Properties dialog box,
select Log signal. For details, see “Export Signal Data Using Signal
Logging”.

= To File block

To Workspace block — In the To Workspace block parameters dialog box,
enable the Log fixed-point data as a fi object parameter.

® For multiple names, use a comma-separated list (for example, yout1,
yout2).

Data Import/Export Pane

Command-Line Information

Parameter: SaveOutput
Type: string

Value: 'on' | 'off'
Default: 'on'

Parameter: OutputSaveName
Type: string

Value: any valid value
Default: 'yout'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

e “Export Simulation Data”
¢ Configuration Parameters Dialog Box

¢ Data Import/Export Pane

1-93

1 Configuration Parameters Dialog Box

1-94

Final states

Saves the logged states of the model at the end of a simulation to the specified
MATLAB variable.

Settings
Default: Off, xFinal

I7On

Simulink software exports final logged state data to the MATLAB
workspace during simulation.

Specify the name of the MATLAB variable in which to store the values
of these final states. See Importing and Exporting States for more
information.

I off

Simulink software does not export the final state data during simulation.

Tips

You must select the Final states check box before entering the final states
variable.

Simulink software saves the final states in a MATLAB workspace variable
having the specified name.

The saved data has the format that you specify with the Format parameter.

Simulink creates empty variables for final state logging (xfinal) if both of
these conditions apply:

= You enable Final states.
= A model has no states.

See “Import and Export States” for more information.

Data Import/Export Pane

Command-Line Information

Parameter: SaveFinalState
Type: string

Value: 'on' | 'off!'
Default: 'off'

Parameter: FinalStateName
Type: string

Value: any valid value
Default: 'xFinal'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

¢ Importing and Exporting States
¢ Configuration Parameters Dialog Box

¢ Data Import/Export Pane

1-95

1 Configuration Parameters Dialog Box

1-96

Format

Select the data format for saving states, output, and final states data.

Settings
Default: Array

Array
The format of the data is a matrix each row of which corresponds to a
simulation time step.

Structure
For logging output, the format of the data is a structure that contains
substructures for each port. Each port substructure contains signal data
for the corresponding port. For logging states, the structure contains a
substructure for each block that has a state.

Structure with time
The format of the data is a structure that has two fields: a time field
and a signals field. The time field contains a vector of simulation times.
The signals field contains same data as for the Structure format.

Tips

® You can use array format to save your model’s outputs and states only if
the outputs are either all scalars or all vectors (or all matrices for states),
are either all real or all complex, and are all of the same data type. Use the
Structure or Structure with time output formats (see Structure with
time) if your model’s outputs and states do not meet these conditions.

¢ [f you enable the Save complete SimState in final state parameter,
then the format does not apply to final states data.

e Simulink software can read back simulation data saved to the workspace in
the Structure with time output format. See “Import Data to Root-Level
Input Ports” for more information.

® See “State and Output Data Format”.

¢ To specify the format for signal logging data, use the Signal logging
format parameter.

Data Import/Export Pane

Command-Line Information

Parameter: SaveFormat

Type: string

Value: 'Array' | 'Structure' | 'StructureWithTime'
Default: 'Array'’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

¢ “Export Simulation Data”
¢ Configuration Parameters Dialog Box

® Data Import/Export Pane

1-97

1 Configuration Parameters Dialog Box

Limit data points to last
Limit the number of data points to export to the MATLAB workspace.

Settings
Default: On, 1000

v On
Limits the number of data points exported to the MATLAB workspace
to the number that you specify.

Specify the maximum number of data points to export to the MATLAB
workspace. At the end of the simulation, the MATLAB workspace
contains the last N points generated by the simulation.

I off

Does not limit the number of data points.

Tips

® You must select the Limit data points to last check box before specifying
the number of data points.

® Saving data to the MATLAB workspace can slow down the simulation
and consume memory. Use this parameter to limit the number of samples
saved to help avoid this problem.

® You can also apply a Decimation factor to skip a selected number of
samples.

Command-Line Information

Parameter: LimitDataPoints
Type: string

Value: 'on' | 'off!'
Default: 'on'

Parameter: MaxDataPoints
Type: string
Value: any valid value

1-98

Data Import/Export Pane

Default: '1000'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

¢ “Export Simulation Data”
¢ Configuration Parameters Dialog Box

® Data Import/Export Pane

1-99

1 Configuration Parameters Dialog Box

Decimation

Specify that Simulink software output only every N points, where N is the
specified decimation factor.

Settings
Default: 1

® The default value (1) specifies that all data points are saved.

¢ Simulink software outputs data only at the specified number of data points.
For example, specifying 2 saves every other data point, while specifying 10
saves just one in ten data points.

e At the end of the simulation, the total number of data points is reduced by
the factor specified.

Tips

® Saving data to the MATLAB workspace can slow down the simulation
and consume memory. Use this parameter to limit the number of samples
saved to help avoid this problem.

® You can also use the Limit data points to last parameter to help resolve
this problem.

Command-Line Information

Parameter: Decimation
Type: string

Value: any valid value
Default: '1'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-100

Data Import/Export Pane

Application Setting

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

¢ “Export Simulation Data”
¢ Configuration Parameters Dialog Box

® Data Import/Export Pane

1-101

1 Configuration Parameters Dialog Box

1-102

Save complete SimState in final state

At the end of a simulation, Simulink saves the complete set of states of the
model, including logged states, to the specified MATLAB variable.

Settings
Default: Off, xFinal

v On
Simulink software exports the complete set of final state data (i.e., the
SimState) to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable in which to store the values
of the final states. See Importing and Exporting States for more
information.

I off

Simulink software exports the final logged states during simulation.

Tips
® You must select the Final states check box to enable the Save complete
SimState in final state option.

¢ Simulink saves the final states in a MATLAB workspace variable having
the specified name.

Dependencies
This parameter is enabled by Final states.

Command-Line Information

Parameter: SaveCompleteFinalSimState
Type: string

Value: 'on' | 'off!'

Default: 'off"

Parameter: FinalStateName
Type: string

Data Import/Export Pane

Value: any valid value
Default: 'xFinal'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

¢ Importing and Exporting States
¢ Configuration Parameters Dialog Box
¢ Data Import/Export Pane

e “Limitations of the SimState”

1-103

1 Configuration Parameters Dialog Box

1-104

Signal logging

Globally enable or disable signal logging for this model.

Settings
Default: On, logsout

v On
Enables signal logging to the MATLAB workspace during simulation.

Specify the name of the signal logging object used to record logged signal
data in the MATLAB workspace. For more information, see “Specify a
Name for the Signal Logging Data for a Model”.

I off
Disables signal logging to the MATLAB workspace during simulation.

Tips
® You must select the Signal logging check box before entering the signal
logging variable.

¢ Simulink saves the signal data in a MATLAB workspace variable having
the specified name.

¢ The saved data has the format that you specify with the Signal logging
format parameter.

¢ Simulink does not support signal logging for the following types of signals:
= Output of a Function-Call Generator block
= Signal connected to the input of a Merge block
= Outputs of Trigger and Enable blocks

¢ [f you select Signal logging, you can use the Configure Signals to
Log button to open the Signal Logging Selector. You can use the Signal
Logging Selector to:

= Review all signals in a model hierarchy that are configured for logging

= Override signal logging settings for specific signals

Data Import/Export Pane

= Control signal logging throughout a model reference hierarchy in a more
streamlined way than in previous releases

You can use the Signal Logging Selector with Simulink and Stateflow®
signals.

For details about the Signal Logging Selector, see “Use Signal Logging
Selector to View Signal Logging Configuration” and “Override Signal
Logging Settings”.

Dependencies
This parameter enables:

¢ Signal logging format
¢ The Configure Signals to Log button

Command-Line Information

Parameter: SignallLogging
Type: string

Value: 'on' | 'off'
Default: 'on'

Parameter: SignallLoggingName
Type: string

Value: any valid value

Default: 'logsout'’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation or during
development

Off for production code generation

1-105

1 Configuration Parameters Dialog Box

See Also

¢ “Export Signal Data Using Signal Logging”
¢ Configuration Parameters Dialog Box

¢ Data Import/Export Pane

1-106

Data Import/Export Pane

Signal logging format
Specify format for signal logging data for this model.

Settings
Default: Dataset

Dataset

Simulink uses a Simulink.SimulationData.Dataset object to store the
logged signal data and MATLAB timeseries objects for formatting
the data.

ModelDatalLogs

Tips

Simulink uses a Simulink.ModelDatalLogs object to store the logged
signal data. Simulink.Timeseries and Simulink.TsArray objects
provide the format for the data.

This setting is supported for backward compatibility. Prior to

R2012b, the default signal logging format was ModelDataLogs. The
ModelDatalLogs format will be removed in a future release. For an
existing model that uses the ModelDatalLogs format, you should migrate
the model to use Dataset format. For details, see “Migrate from
ModelDatalogs to Dataset Format”.

®* You must select Signal logging before specifying the signal logging format.

e The Dataset format:

Uses MATLAB timeseries objects to store logged data (rather than
Simulink.Timeseries and Simulink.TsArray objects). MATLAB
timeseries objects allow you to work with logging data in MATLAB
without a Simulink license.

Supports logging multiple data values for a given time step, which can
be important for Iterator subsystem and Stateflow signal logging

Provides an easy to analyze format for logged signal data for models
with deep hierarchies, bus signals, and signals with duplicate or invalid
names

1-107

1 Configuration Parameters Dialog Box

= Avoids the limitations of the ModelDatalLogs format. For example, for
a virtual bus, logging only logs one of multiple signals that share the
same source block. See Bug Report 495436 for a description of the
ModelDatalLogs limitations.

¢ Simulink checks signal logging data format consistency for certain model
referencing configurations. For details, see “Model Reference Signal
Logging Format Consistency”. You can use the Upgrade Advisor (with the
upgradeadvisor function) to upgrade a model to use Dataset format.

® An alternative approach for handling reported inconsistencies is to use the
Simulink.SimulationData.updateDatasetFormatLogging function to
update the models to use Dataset format. This approach sets the Model
Configuration Parameters > Data Import/Export > Signal logging
format parameter to Dataset for each referenced model and each variant.

¢ If you have logged signal data in the ModelDatalLogs format, you can use
the Simulink.ModelDataLogs.convertToDataset function to convert the
ModelDatalLogs data to Dataset format.

® Dataset format is required to log array of buses data.

Simulink uses the Simulink.SimulationData.Dataset data format for
logging data stores.

For additional information about specifying the signal logging format, see
“Specify the Signal Logging Data Format”.

Command-Line Information

Parameter: SignallLoggingSaveFormat
Type: string

Value: 'Dataset' | 'ModelDatalogs'
Default: 'Dataset’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-108

http://www.mathworks.com/support/bugreports/search_results?search_executed=1&keyword=495436&release_filter=Exists+in&release=0&selected_products=

Data Import/Export Pane

Application Setting

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

e “Export Signal Data Using Signal Logging”
® “Specify the Signal Logging Data Format”
¢ Configuration Parameters Dialog Box

® Data Import/Export Pane

® Simulink.ModelDatalLogs

® Simulink.SimulationData.Dataset

1-109

1 Configuration Parameters Dialog Box

Data stores

Globally enable or disable logging of Data Store Memory block variables for
this model.

Settings
Default: On, dsmsout

V' on
Enables data store logging to the MATLAB workspace during
simulation.

Specify the name of the data store logging object to use for recording
logged data store data. The data store logging object must be in the
MATLAB workspace.

I ofr
Disables data store logging to the MATLAB workspace during
simulation.

Tips

® Simulink saves the data in a MATLAB workspace variable having the
specified name.

® The saved data has the Simulink.SimulationData.Dataset format.

® See “Supported Data Types, Dimensions, and Complexity for Logging
Data Stores”“Data Store Logging Limitations” and “Data Store Logging
Limitations”.

Dependencies. Select the Data stores check box before entering the data
store logging variable.

Command-Line Information

Parameter: DSMLogging
Type: string

Value: 'on' | 'off'
Default: 'on'

1-110

Data Import/Export Pane

Parameter: DSMLoggingName
Type: string

Value: any valid value
Default: 'dsmOut'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

* “Log Data Stores”

¢ “Export Signal Data Using Signal Logging”

¢ Configuration Parameters Dialog Box

e Data Import/Export Pane

® Simulink.SimulationData.DataStoreMemory

e Data Store Memory

1-111

1 Configuration Parameters Dialog Box

1-112

Output options

Select options for generating additional output signal data for variable-step
solvers.

Settings
Default: Refine output

Refine output
Generates data output between, as well as at, simulation times steps.
Use Refine factor to specify the number of points to generate between
simulation time steps. For more information, see “Refine Output”.

Produce additional output
Generates additional output at specified times. Use Output times
to specify the simulation times at which Simulink software generates
additional output.

Produce specified output only
Use Output times to specify the simulation times at which Simulink
generates output, in addition to the simulation start and stop times.

Tips

* These settings can force the solver to calculate output values for times that
it would otherwise have omitted because the calculations were not needed
to achieve accurate simulation results. These extra calculations can cause
the solver to locate zero crossings that it would otherwise have missed.

¢ For additional information on how Simulink software calculates outputs for
these three options, see “Samples to Export for Variable-Step Solvers”.

Dependencies

This parameter is enabled only if the model specifies a variable-step solver
(see Solver Type).

Selecting Refine output enables the Refine factor parameter.

Selecting Produce additional output or Produce specified output only
enables the Output times parameter.

Data Import/Export Pane

Command-Line Information

Parameter: OutputOption

Type: string

Value: 'RefineOutputTimes' | 'AdditionalOQutputTimes’' |
'SpecifiedOutputTimes'

Default: 'RefineQOutputTimes'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

® “Output Options”

® Refine factor

¢ “Refine Output”

¢ “Export Simulation Data”

¢ Configuration Parameters Dialog Box

® Data Import/Export Pane

1-113

1 Configuration Parameters Dialog Box

1-114

Refine factor

Specify how many points to generate between time steps to refine the output.

Settings
Default: 1

® The default refine factor is 1, meaning that no extra data points are
generated.

® A refine factor of 2 provides output midway between the time steps, as
well as at the steps.

Tip
Simulink software ignores this option for discrete models. This is because the
value of data between time steps is undefined for discrete models.

Dependency
This parameter is enabled only if you select Refine output as the value
of Output options.

Command-Line Information

Parameter: Refine
Type: string

Value: any valid value
Default: '1'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Data Import/Export Pane

Application Setting

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

e “Refine Output”
¢ Configuration Parameters Dialog Box

® Data Import/Export Pane

1-115

1 Configuration Parameters Dialog Box

1-116

Output times

Specify times at which Simulink software should generate output in addition
to, or instead of, the times of the simulation steps taken by the solver used
to simulate the model.

Settings
Default: []

Enter a matrix containing the times at which Simulink software should
generate output in addition to, or instead of, the simulation steps taken
by the solver.

If the value of Output options is Produce additional output, for the
default value [], Simulink generates no additional data points.

If the value of Output options is Produce specified output only, for
the default value [] Simulink generates no data points.

Tips

The Produce additional output option generates output at the specified
times, as well as at the regular simulation steps.

The Produce specified output only option generates output at the
specified times.

Discrete models define outputs only at major time steps. Therefore,
Simulink software logs output for discrete models only at major time
steps. If the Output times field specifies other times, Simulink displays a
warning at the MATLAB command line.

For additional information on how Simulink software calculates outputs
for the Output options Produce specified output only and Produce
additional output options, see “Samples to Export for Variable-Step
Solvers”.

Dependency

This parameter is enabled only if the value of Output options is Produce
additional output or Produce specified output only.

Data Import/Export Pane

Command-Line Information

Parameter: OutputTimes
Type: string

Value: any valid value
Default: '[]'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

e “Refine Output”
¢ Configuration Parameters Dialog Box

® Data Import/Export Pane

Save simulation output as single object

Enable the single-output format of the sim command.

Settings
Default: off

¢ Turning this option 'on’ causes Simulink to return all simulation outputs
within a single Simulink.SimulationOutput object, providing that you
simulate by choosing Simulation > Start from the model window.

1-117

1 Configuration Parameters Dialog Box

¢ When turning this option ‘on’, you must specify the variable name of the
single output object which will contain the simulation outputs. Use the text
field next to the check box to specify this name.

¢ Enabling this option makes the sim command compatible with the parfor
command, in terms of transparency issues.

Tips

¢ [f you select this option and you simulate by entering the sim command
at the command line of the MATLAB command window, then the output
variables will not be stored in the object 'out'. Instead, they will be stored
in their respective variable names. This design is necessary to avoid
workspace issues when sim is called from within a parfor loop.

¢ The method who of the Simulink.SimulationOutput object returns the list
of variables that the object contains.

e Use the get method of the Simulink.SimulationOutput object to access
the variables that the object contains.

Command-Line Information

Parameter: ReturnWorkspaceOutputs
Type: string

Value: 'on' | 'off' |

Default: 'off'

Parameter: ReturnWorkspaceOutputsName
Type: string

Value: Any valid value

Default: 'Out’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-118

Data Import/Export Pane

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

e “Configuration Parameters Dialog Box Overview” on page 1-3
® “Data Import/Export Pane” on page 1-81
® “Run Simulation Using the sim Command”

¢ “Run Parallel Simulations”

1-119

1 Configuration Parameters Dialog Box

1-120

Record and inspect simulation output
Specify whether Simulink software records logged signals during simulation.

Settings
Default: Off

¥ On
Simulink records logged signals during simulation. In the Simulink
Editor toolbar, this setting turns the Record button on. After Simulink
records a simulation, a notification bar appears in the Simulink Editor.
In the notification bar, click the link to open the Simulation Data
Inspector. The simulation data automatically appears in the Signal
Browser table.

I ofr

Simulink does not record logged signals during simulation. In the
Simulink Editor toolbar, this setting turns the Record button off.

Tip
To open the Simulation Data Inspector, in the Simulink Editor toolbar, click
the Record button arrow and select Simulation Data Inspector.

Command-Line Information

Parameter: InspectSignallLogs
Type: string

Value: 'on' | 'off!'

Default: 'off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Data Import/Export Pane

Application Setting

Efficiency No impact

Safety precaution No impact for simulation and during
development

Off for production code generation

See Also

* “Signal Logging”
® “Record Simulation Data”
® “Inspect Signal Data”

¢ “Customize the Simulation Data Inspector Interface”

1-121

1 Configuration Parameters Dialog Box

Optimization Pane: General

The Optimization > General pane includes the following parameters:
Simulation and code generation
Block reduction Conditional input branch execution
Implement logic signals as Boolean data (vs. double) Application lifespan (days) inf

[] Use integer division to handle net slopes that are reciprocals of integers

[] Use floating-peint multiplication to handle net slope corrections

Default for underspedfied data type: |double

Code generation
Data initialization
IIse memset to initialize floats and doubles to 0.0
Integer and fixed-point

[] Remove code from floating-point to integer conversions that wraps out-of-range values

Remove code from floating-point to integer conversions with saturation that maps MaM to zero

Accelerating simulations

Compiler optimization level: | Optimizations off (faster builds)

[verbose accelerator builds

In this section...

“Optimization Pane: General Tab Overview” on page 1-124
“Block reduction” on page 1-125
“Conditional input branch execution” on page 1-129

“Implement logic signals as Boolean data (vs. double)” on page 1-132

“Application lifespan (days)” on page 1-134

1-122

Optimization Pane

: General

In this section...

“Use integer division to handle net slopes that are reciprocals of integers”
on page 1-137

“Use floating-point multiplication to handle net slope corrections” on page
1-139

“Default for underspecified data type” on page 1-141

“Optimize using the specified minimum and maximum values” on page
1-143

“Remove root level I/O zero initialization” on page 1-147

“Use memset to initialize floats and doubles to 0.0” on page 1-149
“Remove internal data zero initialization” on page 1-151
“Optimize initialization code for model reference” on page 1-153

“Remove code from floating-point to integer conversions that wraps
out-of-range values” on page 1-155

“Remove code from floating-point to integer conversions with saturation
that maps NaN to zero” on page 1-157

“Remove code that protects against division arithmetic exceptions” on
page 1-159

“Compiler optimization level” on page 1-161

“Verbose accelerator builds” on page 1-163

1-123

1 Configuration Parameters Dialog Box

1-124

Optimization Pane: General Tab Overview

Set up optimizations for a model’s active configuration set. Optimizations are
set for both simulation and code generation.

Tips
® To open the Optimization pane, in the Simulink Editor, select

Simulation > Model Configuration Parameters > Optimization.

¢ Simulink Coder optimizations appear only when the Simulink Coder
product is installed on your system. Selecting a GRT-based or ERT-based
system target file changes the available options. ERT-based target
optimizations require a Embedded Coder® license when generating code.
See the Dependencies sections below for licensing information for each
parameter.

See Also

e “Configuration Parameters Dialog Box Overview” on page 1-3
¢ “Optimization Pane: General” on page 1-122
e “Perform Acceleration”

® For code generation, see “Performance”

Optimization Pane: General

Block reduction
Reduce execution time by collapsing or removing groups of blocks.

Settings
Default: On

I70n

Simulink software searches for and reduces the following block patterns:

¢ Redundant type conversions — Unnecessary type conversion
blocks, such as an int type conversion block with an input and
output of type int.

¢ Dead code — Blocks or signals in an unused code path.

¢ Fast-to-slow Rate Transition block in a single-tasking system
— Rate Transition blocks with an input frequency faster than its
output frequency.

I off
Simulink software does not search for block patterns that can be
optimized. Simulation and generated code are not optimized.

Tips

® When you select Block reduction, Simulink software collapses certain
groups of blocks into a single, more efficient block, or removes them
entirely. This results in faster execution during model simulation and in
generated code.

® Block reduction does not change the appearance of the source model.

® Tunable parameters do not prevent a block from being reduced by dead
code elimination.

® Once block reduction takes place, Simulink software does not display the
sorted order for blocks that have been removed.

¢ If you have a Simulink Coder license, block reduction is intended to
remove only the generated code that represents execution of a block. Other
supporting data, such as definitions for sample time and data types might
remain in the generated code.

1-125

1 Configuration Parameters Dialog Box

1-126

Dead Code Elimination. Any blocks or signals in an unused code path
are eliminated from generated code.

¢ The following conditions need to be met for a block to be considered part of
an unused code path:

= All signal paths for the block end with a block that does not execute.
Examples of blocks that do not execute include Terminator blocks,
disabled Assertion blocks, S-Function blocks configured for block
reduction, and To Workspace blocks when MAT-file logging is disabled
for code generation.

No signal paths for the block include global signal storage downstream
from the block.

® Tunable parameters do not prevent a block from being reduced by dead
code elimination.

O
In1 Out1

NeverDeadCodeZain

O————F

2 -
AlwsysDesdCodeGain (=minstor

- > .> N |

Gain Scope

® Consider the signal paths in the following block diagram.

If you check Block reduction, Simulink Coder software responds to each
signal path as follows:

Optimization Pane: General

For Signal Simulink Coder Software...

Path...

In1 to Outl Always generates code because dead code elimination
conditions are not met.

In2 to Never generates code because dead code elimination

Terminator conditions are met.

In3 to Scope Generates code if MAT-file logging is enabled and

eliminates code if MAT-file logging is disabled.

Command-Line Information

Parameter: BlockReduction
Type: string

Value: 'on' | 'off!'
Default: 'on'

Recommended Settings

Application Setting

Debugging Off (for simulation and during
development)
No impact (for production code generation)

Traceability Off

Efficiency On

Safety precaution Off

See Also

e “Single-Tasking and Multitasking Execution Modes”
¢ “Single-Tasking and Multitasking Model Execution”
e “Configuration Parameters Dialog Box Overview” on page 1-3

¢ “Optimization Pane: General” on page 1-122

1-127

1 Configuration Parameters Dialog Box

® For code generation, see “Performance”

1-128

Optimization Pane: General

Conditional input branch execution

Improve model execution when the model contains Switch and Multiport
Switch blocks.

Settings

Default: On

¥ On
Executes only the blocks required to compute the control input and
the data input selected by the control input. This optimization speeds

execution of code generated from the model. Limits to Switch block
optimization:

¢ Only blocks with -1 (inherited) or inf (Constant) sample time can
participate.

¢ Blocks with outputs flagged as test points cannot participate.
¢ No multirate block can participate.
® Blocks with states cannot participate.

¢ Only S-functions with option
SS_OPTION_CAN _BE_CALLED_CONDITIONALLY set can participate.

I off
Executes all blocks driving the Switch block input ports at each time
step.

Command-Line Information

Parameter: ConditionallyExecuteInputs
Type: string

Value: 'on' | 'off!'

Default: 'on'

1-129

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting
Debugging No impact
Traceability On
Efficiency On (execution), No impact (ROM, RAM)
Safety precaution No impact
See Also

¢ “Minimize Computations and Storage for Intermediate Results”
¢ “Conditional Execution Behavior”

e “Configuration Parameters Dialog Box Overview” on page 1-3

® “Optimization Pane: General” on page 1-122

® For code generation, see “Performance”

1-130

1 Configuration Parameters Dialog Box

1-131

1 Configuration Parameters Dialog Box

1-132

Implement logic signals as Boolean data (vs. double)
Controls the output data type of blocks that generate logic signals.

Settings
Default: On

¥ On
Blocks that generate logic signals output a signal of boolean data type.
This reduces the memory requirements of generated code.

I off
Blocks that generate logic signals output a signal of double data type.
This ensures compatibility with models created by earlier versions of
Simulink software.

Tips

® Setting this option on reduces the memory requirements of generated code,
because a Boolean signal typically requires one byte of storage compared
to eight bytes for a double signal.

e Setting this option off allows the current version of Simulink software to
run models that were created by earlier versions of Simulink software that
supported only signals of type double.

¢ This optimization affects the following blocks:

= Logical Operator block — This parameter affects only those Logical
Operator blocks whose Output data type parameter specifies Inherit:
Logical (see Configuration Parameters: Optimization). If this
parameter is selected, such blocks output a signal of boolean data type;
otherwise, such blocks output a signal of double data type.

= Relational Operator block — This parameter affects only those
Relational Operator blocks whose Output data type parameter
specifies Inherit: Logical (see Configuration Parameters:
Optimization). If this parameter is selected, such blocks output a
signal of boolean data type; otherwise, such blocks output a signal of
double data type.

Optimization Pane: General

= Combinatorial Logic block — If this parameter is selected,
Combinatorial Logic blocks output a signal of boolean data type;
otherwise, they output a signal of double data type. See Combinatorial
Logic in the Simulink Reference for an exception to this rule.

= Hit Crossing block — If this parameter is selected, Hit Crossing blocks
output a signal of boolean data type; otherwise, they output a signal
of double data type.

Dependencies

® This parameter is disabled for models created with a version of Simulink
software that supports only signals of type double.

Command-Line Information

Parameter: BooleanDataType
Type: string

Value: 'on' | 'off!'

Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On
Safety precaution On

See Also

e “Configuration Parameters Dialog Box Overview” on page 1-3

® “Optimization Pane: General” on page 1-122

® For code generation, see “Performance”

1-133

1 Configuration Parameters Dialog Box

1-134

Application lifespan (days)
Specify how long (in days) an application that contains blocks depending on
elapsed or absolute time should be able to execute before timer overflow.

Settings

Default: inf

Min: Must be greater than zero
Max: inf

Enter a positive (nonzero) scalar value (for example, 0.5) or inf.

If you are licensed for the Embedded Coder product and select an ERT target
for your model, the default value for Application lifespan (days) is 1.

This parameter is ignored when you are operating your model in external
mode, have Mat-file logging enabled, or have a continuous sample time
because a 64 bit timer is required in these cases.

Tips

® Specifying a lifespan, along with the simulation step size, determines the
data type used by blocks to store absolute time values.

® For simulation, setting this parameter to a value greater than the
simulation time will ensure time does not overflow.

e Simulink software evaluates this parameter first against the model
workspace. If this does not resolve the parameter, Simulink software then
evaluates it against the base workspace.

® The Application lifespan also determines the word size used by timers in
the generated code, which can lower RAM usage. For more information, see
Timing Services in the Simulink Coder documentation.

® Application lifespan, when combined with the step size of each task,
determines the data type used for integer absolute time for each task, as
follows:

= If your model does not require absolute time, this option affects neither
simulation nor the generated code.

Optimization Pane: General

= If your model requires absolute time, this option optimizes the word size
used for storing integer absolute time in generated code. This ensures
that timers do not overflow within the lifespan you specify. If you set
Application lifespan to inf, two uint32 words are used.

= If your model contains fixed-point blocks that require absolute time, this
option affects both simulation and generated code.

For example, using 64 bits to store timing data enables models with a step
size of 0.001 microsecond (10E-09 seconds) to run for more than 500 years,
which would rarely be required. To run a model with a step size of one
millisecond (0.001 seconds) for one day would require a 32-bit timer (but it
could continue running for 49 days).

e A timer will allocate 64 bits of memory if you specify a value of inf.

® To minimize the amount of RAM used by time counters, specify a lifespan
no longer than necessary.

® Must be the same for top and referenced models.

e Optimize the size of counters used to compute absolute and elapsed time.

Command-Line Information

Parameter: LifeSpan

Type: string

Value: positive (nonzero) scalar value or inf
Default: 'inf'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Finite value
Safety precaution inf

1-135

1 Configuration Parameters Dialog Box

See Also

® “About Scheduling”

e “Use Timers in Asynchronous Tasks”

e “Configuration Parameters Dialog Box Overview” on page 1-3
® “Optimization Pane: General” on page 1-122

® For code generation, see “Performance”

1-136

Optimization Pane: General

Use integer division to handle net slopes that are
reciprocals of integers

The Fixed-Point Designer™ software performs net slope correction using
integer division to handle net slopes that are reciprocals of integers when
simplicity and accuracy conditions are met.

Settings
Default: Off

M On
Perform net slope correction using integer division when simplicity
and accuracy conditions are met.

I o
Perform net slope correction using integer multiplication followed by
shifts.

Tips

¢ This optimization affects both simulation and code generation.

® When a change of fixed-point slope is not a power of two, net slope
correction is necessary. Normally, net slope correction uses an integer
multiplication followed by shifts. Enabling this new optimization replaces
the multiplication and shifts with an integer division under certain
simplicity and accuracy conditions.

¢ Performing net slope correction using integer division is not always more
efficient than using multiplication followed by shifts. Ensure that the
target hardware supports efficient division.

® To ensure that this optimization occurs, you must:

= Set the word length of the block to ensure that the software can perform

division using the production target long data type. This avoids using
multiword operations.

= Set the Signed integer division rounds to configuration parameter
setting on the Hardware Implementation > Production hardware
subpane to Zero or Floor. The optimization does not occur if this
parameter is set to Undefined.

1-137

1 Configuration Parameters Dialog Box

= Set the Integer rounding mode parameter of the block to Simplest or
to the value of the Signed integer division rounds to configuration
parameter setting on the Hardware Implementation > Production
hardware subpane.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter: UseIntDivNetSlope
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (when target hardware supports
efficient division)
Off (otherwise)

Safety precaution No impact

See Also

e Use Integer Division for Net Slope Correction
e “Configuration Parameters Dialog Box Overview” on page 1-3

® “Optimization Pane: General” on page 1-122

1-138

Optimization Pane: General

Use floating-point multiplication to handle net slope
corrections

The Fixed-Point Designer software uses floating-point multiplication to
perform net slope correction for floating-point to fixed-point casts.

Settings
Default: Off
I On

Use floating-point multiplication to perform net slope correction for
floating-point to fixed-point casts.

I off
Use division to perform net slope correction for floating-point to
fixed-point casts.

Tips

® This optimization affects both simulation and code generation.

® When converting from floating point to fixed point, if the net slope is not a
power of two, slope correction using division improves precision. For some
processors, use of multiplication improves code efficiency.

Dependencies

¢ This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter: UseFloatMulNetSlope
Type: string

Value: 'on' | 'off!'

Default: 'off'

1-139

1 Configuration Parameters Dialog Box

1-140

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting
No impact
No impact

On (when target hardware supports
efficient multiplication)
Off (otherwise)

Off

See Also

e “Configuration Parameters Dialog Box Overview” on page 1-3

® “Optimization Pane: General” on page 1-122

Optimization Pane: General

Default for underspecified data type

Specify the default data type to use for inherited data types if Simulink
software could not infer the data type of a signal during data type propagation.

Settings
Default: double

double
Sets the data type for underspecified data types during data type
propagation to double. Simulink uses double as the data type for
inherited data types.

single
Sets the data type for underspecified data types during data type
propagation to single. Simulink uses single as the data type for
inherited data types.

Tips

¢ This setting affects both simulation and code generation.

® For embedded designs that target single-precision processors, set this
parameter to single to avoid the introduction of double data types.

e Use the Model Advisor Identify questionable operations for strict
single-precision design check to identify the double-precision usage in
your model.

Command-Line Information

Parameter: DefaultUnderspecifiedDataType
Type: string

Value: 'double' | 'single'’

Default: 'double’

1-141

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (when target hardware supports

efficient single computations)
Off (otherwise)

Safety precaution

No impact

See Also

¢ “Identify questionable operations for strict single-precision design”

® “Validate a Single-Precision Model”

1-142

Optimization Pane: General

Optimize using the specified minimum and maximum
values

Optimize generated code using the specified minimum and maximum values
for signals and parameters in the model.

Settings
Default: Off

¥ on
Optimizes the generated code using range information derived from the

minimum and maximum specified values for signals and parameters in
the model.

I off

Ignores specified minimum and maximum values when generating code.

Tips

¢ Before generating code, test the specified values by simulating your model
with simulation range checking enabled using the Diagnostics > Data
Validity > Simulation range checking configuration parameter. If
errors or warnings occur, fix these issues before generating code. Otherwise,
optimization might result in numerical mismatch with simulation.

¢ Specify minimum and maximum values for signals and parameters in the
model for:

= Inport and Outport blocks.
= Block outputs.

= Block inputs, for example, for the MATLAB Function and Stateflow
Chart blocks.

= Simulink.Signal objects.

¢ This optimization does not take into account minimum and maximum
values specified for:

Merge block inputs. To work around this, use a Simulink.Signal object
on the Merge block output and specify the range on this object

1-143

1 Configuration Parameters Dialog Box

= Bus elements.

= Conditionally-executed subsystem (such as a triggered subsystem) block
outputs that are directly connected to an Outport block.

Outport blocks in conditionally-executed subsystems can have an initial
value specified for use only when the system is not triggered. In this
case, the optimization cannot use the range of the block output because
the range might not cover the initial value of the block.

e If you use the Polyspace® Code Prover™software to verify code generated
using this optimization, it might mark code that was previously green as
orange. For example, if your model contains a division where the range of
the denominator does not include zero, the generated code does not include
protection against division by zero. Polyspace Code Prover might mark this
code orange because it does not have information about the minimum and
maximum values specified for the inputs to the division.

The Polyspace Code Prover software does automatically capture some
minimum and maximum values specified in the MATLAB workspace,
for example, for Simulink.Signal and Simulink.Parameter objects. In
this example, to provide range information to the Polyspace Code Prover
software, use a Simulink.Signal object on the input of the division and
specify a range that does not include zero.

The Polyspace Code Prover software stores these values in a Data Range
Specification (DRS) file. However, they do not capture all minimum and
maximum values specified in your Simulink model. To provide additional
min/max information to Polyspace Code Prover, you can manually
define a DRS file. For more information, see the Polyspace Code Prover
documentation.

e If you are using double-precision data types and the Code Generation >
Interface > Support non-finite numbers configuration parameter is
selected, this optimization does not occur.

¢ If your model contains multiple instances of a reusable subsystem and
each instance uses input signals with different specified minimum and
maximum values, this optimization might result in different generated code
for each subsystem so code reuse does not occur. Without this optimization,
the Simulink Coder software generates code once for the subsystem and
shares this code among the multiple instances of the subsystem.

1-144

Optimization Pane: General

® The Model Advisor Check safety-related optimization settings check
generates a warning if this option is selected. For many safety critical
applications, it is not acceptable to remove dead code automatically because
this might result in requirements without traceable code. For more
information, see Check safety-related optimization settings.

* Enabling this optimization improves the ability of the Fixed-Point Designer
software to eliminate unnecessary utility functions and saturation code
from the generated code.

Dependencies

¢ This parameter appears for ERT-based targets only.

¢ This parameter requires a Embedded Coder license when generating code.

Command-Line Information

Parameter: UseSpecifiedMinMax
Type: string

Value: 'on' | 'off!'

Default: 'off'

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On

Safety precaution Off
See Also

® “Optimize Generated Code Using Specified Minimum and Maximum
Values”

1-145

1 Configuration Parameters Dialog Box

e “Optimize Generated Code Using Specified Minimum and Maximum
Values” in the Fixed-Point Designer documentation.

1-146

Optimization Pane: General

Remove root level 1/0 zero initialization

Specify whether to generate initialization code for root-level inports and
outports set to zero.

Settings
Default: Off (GUI), 'on' (command-line)

I7On

Does not generate initialization code for root-level inports and outports
set to zero.

™ ot
Generates initialization code for all root-level inports and outports. Use
the default:

¢ To initialize memory allocated for C MEX S-function wrappers to zero.

e To initialize all internal and external data to zero.

Note Generated code never initializes data of ImportedExtern or
ImportedExternPointer storage classes, regardless of configuration
parameter settings.

Dependencies

¢ This parameter appears only for ERT-based targets.

¢ This parameter requires a Embedded Coder license when generating code.

Command-Line Information

Parameter: ZeroExternalMemoryAtStartup
Type: string

Value: 'off' | 'on'

Default: 'on'

1-147

1 Configuration Parameters Dialog Box

Note The command-line values are reverse of the settings values. Therefore,
'on' in the command line corresponds to the description of “Off” in the
settings section, and 'off' in the command line corresponds to the description
of “On” in the settings section.

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On (GUI), of f (command line) (execution,
ROM), No impact (RAM)
Safety precaution Off (GUI), on (command line)
See Also

e “Configuration Parameters Dialog Box Overview” on page 1-3
® “Optimization Pane: General” on page 1-122

¢ For code generation, see “Performance”

1-148

Optimization Pane: General

Use memset to initialize floats and doubles to 0.0

Specify whether to generate code that explicitly initializes floating-point
data to 0.0.

Settings
Default: On (GUI), 'off' (command-line)

v On
Uses memset to clear internal storage for floating-point data to integer
bit pattern O (all bits 0), regardless of type. An example of a case for
selecting this option is to gain compiler efficiency when the compiler
and target CPU both represent floating-point zero with the integer bit
pattern 0.

I off
Generates code to explicitly initialize storage for data of types float
and double to 0.0. The resulting code is slightly less efficient than code
generated when you select the option.

You should not select this option if you need to ensure that memory
allocated for C MEX S-function wrappers is initialized to zero.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: InitF1tsAndDblsToZero
Type: string

Value: 'on' | 'off'

Default: 'off'

Note The command-line values are reverse of the settings values. Therefore,
'on' in the command line corresponds to the description of “Off” in the
settings section, and 'off' in the command line corresponds to the description
of “On” in the settings section.

1-149

1 Configuration Parameters Dialog Box

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting
No impact
No impact

On (GUI), 'off' (command-line)
(execution, ROM), No impact (RAM)

No impact

See Also

e “Configuration Parameters Dialog Box Overview” on page 1-3

® “Optimization Pane: General” on page 1-122

¢ For code generation, see “Performance”

1-150

Optimization Pane: General

Remove internal data zero initialization

Specify whether to generate initialization code for internal work structures,
such as block states and block outputs, to zero.

Settings
Default: Off (GUI), 'on' (command-line)

v On
Does not generate code that initializes internal work structures to zero.
An example of when you might select this parameter is to test the
behavior of a design during warm boot—a restart without full system
reinitialization.

Selecting this parameter does not guarantee that memory is in a known
state each time the generated code begins execution. When you run a
model or generated S-function multiple times, each run can produce a
different answer, even when calling the model initialization function in
an attempt to reset memory.

If want to get the same answer on every run from a generated
S-function, enter the command clear SFcnNam or clear mex in the
MATLAB Command Window before each run.

™ off
Generates code that initializes internal work structures to zero. You
should use the default:

¢ To ensure that memory allocated for C MEX S-function wrappers
1s initialized to zero

¢ For safety critical applications that require that all internal and
external data be initialized to zero

Dependencies

® This parameter appears only for ERT-based targets.

¢ This parameter requires a Embedded Coder license when generating code.

1-151

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: ZeroInternalMemoryAtStartup
Type: string

Value: 'off' | 'on'

Default: 'on'

Note The command-line values are reverse of the settings values. Therefore,
'on' in the command line corresponds to the description of “Off” in the
settings section, and 'off' in the command line corresponds to the description
of “On” in the settings section.

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On (GUI), of f (command line), (execution,
ROM), No impact (RAM)
Safety precaution Off (GUI), on (command line)
See Also

e “Configuration Parameters Dialog Box Overview” on page 1-3
® “Optimization Pane: General” on page 1-122

¢ For code generation, see “Performance”

1-152

Optimization Pane: General

Optimize initialization code for model reference
Specify whether to generate initialization code for blocks that have states.

Settings
Default: on

¥ On
Suppresses generation of initialization code for blocks that have states

unless the blocks are in a system that can reset its states, such as an
enabled subsystem. This results in more efficient code.

I off
Generates 1nitialization code for all blocks that have states. Disable this
option if the current model includes a subsystem that resets states, such

as an enabled subsystem, and the model is referred to from another
model with a Model block.

Tips

The following restrictions apply to using the Optimize initialization code
for model reference parameter. However, these restrictions do not apply to
a Model block that references a function-call model.

¢ In a subsystem that resets states, do not include a Model block that
references a model that has this parameter set to on. For example, in an
enabled subsystem with the States when enabling block parameter set to
reset, do not include a Model block that references a model that has the
Optimize initialization code for model reference parameter set to on.

¢ If you set the Optimize initialization code for model reference
parameter to off in a model that includes a Model block that directly
references a model, do not set the Optimize initialization code for
model reference parameter for the referenced model to on.

Dependencies

¢ This parameter appears only for ERT-based targets.

¢ This parameter requires a Embedded Coder license when generating code.

1-153

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: OptimizeModelRefInitCode
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On (execution, ROM), No impact (RAM)
Safety precaution No impact
See Also

e “Configuration Parameters Dialog Box Overview” on page 1-3
® “Optimization Pane: General” on page 1-122

¢ For code generation, see “Performance”

1-154

Optimization Pane: General

Remove code from floating-point to integer
conversions that wraps out-of-range values

Remove wrapping code that handles out-of-range floating-point to integer
conversion results.

Settings
Default: Off

¥ On
Removes code when out-of-range conversions occur. Select this check
box if code efficiency is critical to your application and the following
conditions are true for at least one block in the model:

e Computing the outputs or parameters of a block involves converting
floating-point data to integer or fixed-point data.

¢ The Saturate on integer overflow check box is cleared in the
Block Parameters dialog box.

Caution Execution of generated code might not produce the same
results as simulation.

I off
Results for simulation and execution of generated code match when
out-of-range conversions occur. The generated code is larger than when
you select this check box.

Tips

® Selecting this check box reduces the size and increases the speed of the
generated code at the cost of potentially producing results that do not
match simulation in the case of out-of-range values.

® Selecting this check box affects code generation results only for out-of-range
values and cannot cause code generation results to differ from simulation
results for in-range values.

1-155

1 Configuration Parameters Dialog Box

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: EfficientFloat2IntCast
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On (execution, ROM), No impact (RAM)

Safety precaution Off (for simulation and during
development)

On (for production code generation)

See Also

¢ Removing Code That Wraps Out-of-Range Values
e “Configuration Parameters Dialog Box Overview” on page 1-3

® “Optimization Pane: General” on page 1-122

1-156

Optimization Pane: General

Remove code from floating-point to integer
conversions with saturation that maps NaN to zero

Remove code that handles floating-point to integer conversion results for
NaN values.

Settings
Default: On

¥ On
Removes code when mapping from NaN to integer zero occurs. Select
this check box if code efficiency is critical to your application and the
following conditions are true for at least one block in the model:

¢ Computing outputs or parameters of a block involves converting
floating-point data to integer or fixed-point data.

¢ The Saturate on integer overflow check box is selected in the
Block Parameters dialog box.

Caution Execution of generated code might not produce the same
results as simulation.

I off
Results for simulation and execution of generated code match when
mapping from NaN to integer zero occurs. The generated code is larger
than when you select this check box.

Tips

® Selecting this check box reduces the size and increases the speed of the
generated code at the cost of producing results that do not match simulation
in the case of NaN values.

e Selecting this check box affects code generation results only for NaN values
and cannot cause code generation results to differ from simulation results
for any other values.

1-157

1 Configuration Parameters Dialog Box

Dependencies

¢ This parameter requires a Simulink Coder license.

e For ERT-based targets, this parameter is enabled when you select the
floating-point numbers and non-finite numbers check boxes in the
Code Generation > Interface pane.

Command-Line Information

Parameter: EfficientMapNaN2IntZero
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On

Safety precaution Off (for simulation and during
development)

On (for production code generation)

See Also

®* Removing Code That Maps NaN Values to Integer Zero
e “Configuration Parameters Dialog Box Overview” on page 1-3

® “Optimization Pane: General” on page 1-122

1-158

Optimization Pane: General

Remove code that protects against division arithmetic
exceptions

Specify whether to generate code that guards against division by zero for
fixed-point data.

Settings
Default: On

M On
Does not generate code that guards against division by zero for
fixed-point data. When you select this option, simulation results and
results from generated code might not be in bit-for-bit agreement.

I off

Generates code that guards against division by zero for fixed-point data.

Dependencies

¢ This parameter appears only for ERT-based targets.

¢ This parameter requires a Embedded Coder license when generating code.

Command-Line Information

Parameter: NoFixptDivByZeroProtection
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-159

1 Configuration Parameters Dialog Box

Application Setting

Efficiency On

Safety precaution Off
See Also

e “Configuration Parameters Dialog Box Overview” on page 1-3
® “Optimization Pane: General” on page 1-122

¢ For code generation, see “Performance”

1-160

Optimization Pane: General

Compiler optimization level

Sets the degree of optimization used by the compiler when generating code
for acceleration.

Settings
Default: Optimizations off (faster builds)

Optimizations off (faster builds)
Specifies the compiler not to optimize code. This results in faster build
times.

Optimizations on (faster runs)
Specifies the compiler to generate optimized code. The generated code
will run faster, but the model build will take longer than if optimizations
are off.

Tips

® The default Optimizations off is a good choice for most models. This
quickly produces code that can be used with acceleration.

® Set Optimizations on to optimize your code. The fast running code
produced by optimization can be advantageous if you will repeatedly run
your model with the accelerator.

Command-Line Information

Parameter: SimCompilerOptimization
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-161

1 Configuration Parameters Dialog Box

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

® “Acceleration”
® “Interact with the Acceleration Modes Programmatically”

e “Customize the Acceleration Build Process”

1-162

Optimization Pane: General

Verbose accelerator builds

Select the amount of information displayed during code generation for
Simulink Accelerator mode, referenced model Accelerator mode, and Rapid
Accelerator mode.

Settings
Default: Off

I ofr

Display limited amount of information during the code generation
process.

IFOn

Display progress information during code generation, and show the
compiler options in use.

Command-Line Information

Parameter: AccelVerboseBuild
Type: string

Value: 'on' | 'off!'

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

For more information about AccelVerboseBuild, see “Controlling Verbosity
During Code Generation”.

1-163

1 Configuration Parameters Dialog Box

Optimization Pane: Signals and Parameters

1-164

The Optimization > Signals and Parameters pane includes the following
parameters when you select a GRT-based system target file:

Simulation and code generation

Inline parameters |Configure...

Code generation
/| Enable local block outputs
/| Eliminate superfluous local variables (expression folding)

Minimize data copies between local and global variables
/| Use memcpy for vector assignment
Inline invariant signals

Loop unrolling threshold: 5

/| Signal storage reuse

| Reuse local block outputs

Memcpy threshold (bytes): &4

Maximum stack size (bytes): Inherit from target

The Optimization > Signals and Parameters pane includes the following
parameters when you select an ERT-based system target file:

Optimization Pane: Signals and Parameters

Simulation and code generation

[Tl Inline parameters Signal storage reuse

Code generation

Enable local block outputs Reuse local block outputs
Eliminate superfluous local variables (expression folding) Reuse global block outputs
Optimize global data access: [None 'J [C] Simplify array indexing

Use memcpy for vector assignment Memcpy threshold (bytes): 64

[] Pack Boolean data into bitfields
Inline invariant signals

Loop unrolling threshold: 5 Maximum stack size (bytes): Inherit from target

Pass reusable subsystem outputs as: | Structure reference

Parameter structure: |Hierarchical

In this section...

“Optimization Pane: Signals and Parameters Tab Overview” on page 1-167
“Inline parameters” on page 1-167

“Signal storage reuse” on page 1-171

“Enable local block outputs” on page 1-173

“Reuse local block outputs” on page 1-175

“Eliminate superfluous local variables (Expression folding)” on page 1-178
“Reuse global block outputs” on page 1-180

“Minimize data copies between local and global variables” on page 1-182
“Inline invariant signals” on page 1-184

“Optimize global data access” on page 1-186

“Simplify array indexing” on page 1-188

“Use memcpy for vector assignment” on page 1-190

“Memcpy threshold (bytes)” on page 1-192

1-165

1 Configuration Parameters Dialog Box

In this section...

“Pack Boolean data into bitfields” on page 1-194
“Bitfield declarator type specifier” on page 1-196
“Loop unrolling threshold” on page 1-198
“Maximum stack size (bytes)” on page 1-200

“Pass reusable subsystem outputs as” on page 1-202
“Parameter structure” on page 1-204

“Model Parameter Configuration Dialog Box” on page 1-206

1-166

Optimization Pane: Signals and Parameters

Optimization Pane: Signals and Parameters Tab
Overview

Set up optimizations for a model’s active configuration set.

Tips

® To open the Optimization: Signals and Parameters pane, in the
Simulink Editor, select Simulation > Model Configuration
Parameters > Optimization > Signals and Parameters.

¢ Simulink Coder optimizations appear only when the Simulink Coder
product is installed on your system. Selecting a GRT-based or ERT-based
system target file changes the available options. ERT-based target
optimizations require a Embedded Coder license when generating code.
See the Dependencies sections below for licensing information for each
parameter.

See Also

® “Optimization Pane: Signals and Parameters” on page 1-164
e “Configuration Parameters Dialog Box Overview” on page 1-3

¢ For code generation, see “Performance”

Inline parameters

Transform tunable parameters into constant values.

Settings
Default: Off

¥ On
Selecting Inline parameters has the following effects:

¢ [f you have a Simulink Coder license, the software uses the numerical
values of model parameters, instead of their symbolic names, in
generated code.

1-167

1 Configuration Parameters Dialog Box

1-168

¢ Reduces global RAM usage, because parameters are not declared in
the global parameters structure.

¢ Enables the Configure button. Clicking the Configure button
opens the Model Parameter Configuration dialog box.

I ofr

Uses symbolic names for model parameters in generated code.

Tips

¢ Simulink allows you to override the Inline parameters option for

parameters whose values are defined by variables in the MATLAB
workspace. To specify that such a parameter remain tunable, specify the
parameter as global in the Model Parameter Configuration dialog box (see
Model Parameter Configuration Dialog Box). To display the dialog box,
click the adjacent Configure button.

Note Simulink ignores tunable parameter specifications in the Model
Parameter Configuration dialog box if the model is a referenced model or
contains any Model blocks. Do not use this dialog box to configure the
storage class of inline model parameters to permit them to be tuned.
Instead, see “Parameterize Model References” for alternate techniques.

If a model contains a Constant block and the Inline parameters option is
checked off, the Constant block does not receive the constant sample time it
requests. The sample time cannot be constant, even if it is set to Inf. For
more information, see “Constant Sample Time”.

To tune a global parameter, change the value of the corresponding
workspace variable and select Update Diagram (Ctrl+D) from the
Simulink Simulation menu.

¢ You cannot tune inline parameters in code generated from a model.

However, when simulating a model, you can tune an inline parameter if
its value derives from a workspace variable. For example, suppose that a
model has a Gain block whose Gain parameter is inline and equals a, where
a is a variable defined in the model’s workspace. When simulating the
model, Simulink software disables the Gain parameter field, preventing

Optimization Pane: Signals and Parameters

you from using the block’s dialog box to change the gain. However, you can
still tune the gain by changing the value of a at the MATLAB command
line and updating the diagram.

® When a top model uses referenced models or if a model is referenced by
another model:

= All referenced models must set Inline parameters to on if the top
model has Inline parameters selected.

= The top model can specify Inline parameters to be on or off.
See Inline Parameter Requirements for more information.

e If your model contains an Environment Controller block, you can suppress
code generation for the branch connected to the Sim port if you select
Inline parameters and the branch does not contain external signals.

® Simulink Scope and Signal Viewer blocks with Constant and Ground
blocks — If you turn on inline parameters, the value of a Constant or
Ground block does not change during the simulation. The constant value is
determined before a simulation and plotted on a scope graph as a single
point. To see a scope trace, change the sample time for a Constant or
Ground block from inf to a value.

Dependencies

This parameter enables:

¢ Configure button

¢ “Parameter structure” on page 1-204

¢ “Inline invariant signals” on page 1-184

Command-Line Information

Parameter: InlineParams
Type: string

Value: 'on' | 'off'
Default: 'off'

1-169

1 Configuration Parameters Dialog Box

1-170

Recommended Settings

Application
Debugging

Traceability
Efficiency

Safety precaution

Setting

Off (for simulation and during
development)
On (for production code generation)

On
On

No impact

See Also

® Model Parameter Configuration Dialog Box

e Parameter Storage, Interfacing, and Tuning

¢ Model Referencing Inline Parameters

¢ Configuration Parameters Dialog Box

¢ Optimization Pane

¢ “Inline Parameters”

Optimization Pane: Signals and Parameters

Signal storage reuse
Reuse signal memory.

Settings
Default: On
¥ On
Simulink software reuses memory buffers allocated to store block input

and output signals, reducing the memory requirement of your real-time
program.

I off
Simulink software allocates a separate memory buffer for each block’s
outputs. This makes all block outputs global and unique, which in many
cases significantly increases RAM and ROM usage.

Tips

* This option applies only to signals with storage class Auto.

® Signal storage reuse can occur only among signals that have the same
data type.

e (Clearing this option can substantially increase the amount of memory
required to simulate large models.

® (lear this option if you need to:
= Debug a C-MEX S-function

= Use a Floating Scope or a Display block with the Floating display
option selected to inspect signals in a model that you are debugging

e Simulink software opens an error dialog if Signal storage reuse is
enabled and you attempt to use a Floating Scope or floating Display block
to display a signal whose buffer has been reused.

Dependencies
This parameter enables:

¢ “Enable local block outputs” on page 1-173

1-171

1 Configuration Parameters Dialog Box

e “Reuse local block outputs” on page 1-175

e “Eliminate superfluous local variables (Expression folding)” on
page 1-178

e “Minimize data copies between local and global variables” on page
1-182 if you have a Simulink Coder license.

“Optimize global data access” on page 1-186 if you have an Embedded
Coder license.

Command-Line Information

Parameter:OptimizeBlockIOStorage
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On

Safety precaution No impact
See Also

e Signal Storage, Optimization, and Interfacing
¢ Optimizing a Model for Code Generation
¢ Configuration Parameters Dialog Box

¢ Optimization Pane

1-172

Optimization Pane: Signals and Parameters

Enable local block outputs
Specify whether block signals are declared locally or globally.

Settings
Default: On

¥ On
Block signals are declared locally in functions.

I off
Block signals are declared globally.

Tips
e [If it is not possible to declare an output as a local variable, the generated
code declares the output as a global variable.

e [If you are constrained by limited stack space, you can turn Enable local
block outputs off and still benefit from memory reuse.

Dependencies

¢ This parameter requires a Simulink Coder license.

® This parameter is enabled by Signal storage reuse.

Command-Line Information

Parameter: LocalBlockOutputs
Type: string

Value: 'on' | 'off'

Default: 'on'

1-173

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On

Safety precaution No impact
See Also

Signal Storage, Optimization, and Interfacing
¢ Signals with Auto Storage Class
¢ Optimizing a Model for Code Generation

¢ Configuration Parameters Dialog Box

Optimization Pane

1-174

Optimization Pane: Signals and Parameters

Reuse local block outputs

Specify whether Simulink Coder software reuses signal memory.

Settings
Default: On
0 On

¢ Simulink Coder software reuses signal memory whenever possible,
reducing stack size where signals are being buffered in local variables.

¢ Selecting this parameter trades code traceability for code efficiency.

™ ofr

Signals are stored in unique locations.

Dependencies
This parameter:

¢ [s enabled by Signal storage reuse.

e Requires a Simulink Coder license.

Command-Line Information
Parameter: BufferReuse
Type: string
Value: 'on' | 'off!'
Default: 'on'

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency On

Safety precaution No impact

1-175

1 Configuration Parameters Dialog Box

1-176

See Also

e Signal Storage, Optimization, and Interfacing
® Signals with Auto Storage Class
® Optimizing a Model for Code Generation

¢ Configuration Parameters Dialog Box

Optimization Pane

1 Configuration Parameters Dialog Box

1-177

1 Configuration Parameters Dialog Box

1-178

Eliminate superfluous local variables (Expression
folding)

Collapse block computations into single expressions.

Settings
Default: On
¥ On
¢ Enables expression folding.

¢ Eliminates local variables, incorporating the information into the
main code statement.

¢ Improves code readability and efficiency.

I ofr

Disables expression folding.

Dependencies

¢ This parameter requires a Simulink Coder license.

® This parameter is enabled by Signal storage reuse.

Command-Line Information

Parameter: ExpressionFolding
Type: string

Value: 'on' | 'off'

Default: 'on'

Optimization Pane: Signals and Parameters

Recommended Settings

Application Setting

Debugging Off

Traceability No impact (for simulation and during
development)
Off (for production code generation)

Efficiency On

Safety precaution No impact

See Also

e Expression Folding
¢ Optimizing a Model for Code Generation
¢ Configuration Parameters Dialog Box

¢ Optimization Pane

1-179

1 Configuration Parameters Dialog Box

Reuse global block outputs

Reuse global memory for block outputs.

Settings
Default: On
0 On

e Software reuses signal memory whenever possible, reducing global
variable use.

¢ Selecting this parameter trades code traceability for code efficiency.

™ ofr

Signals are stored in unique locations.

Dependencies
This parameter:

¢ [s enabled by “Signal storage reuse” on page 1-171.
® Requires an Embedded Coder license.

e Appears only for ERT-based targets.

Command-Line Information

Parameter: GlobalBufferReuse
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging Off
Traceability Off

1-180

Optimization Pane: Signals and Parameters

Application Setting
Efficiency On (execution, ROM, RAM)
Safety precaution No impact

See Also

e Signal Storage, Optimization, and Interfacing
® Signals with Auto Storage Class
¢ Optimizing a Model for Code Generation

¢ Configuration Parameters Dialog Box

Optimization Pane

1-181

1 Configuration Parameters Dialog Box

1-182

Minimize data copies between local and global
variables

Reuse existing global variables to store temporary results.

Settings
Default: Off

IFOn

Writes data for block outputs to global variables, reducing RAM
consumption and execution time.

I off

Writes data for block outputs to local variables.

Dependencies

¢ This parameter requires a Simulink Coder license.
¢ This parameter is enabled by “Signal storage reuse” on page 1-171.

¢ With an Embedded Coder license, if you select an embedded target such
as ert.tlc, the software replaces Minimize data copies between local
and global variables check box with the Optimize global data access
list. When Minimize data copies between local and global variables
is selected, Optimize global data access is set to Use global to hold
temporary results.

Command-Line Information

Parameter: EnhancedBackFolding
Type: string

Value: 'on' | 'off'

Default: 'off'

Optimization Pane: Signals and Parameters

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency On (execution, ROM, RAM)
Safety precaution No impact
See Also
* “Signals”

¢ Configuration Parameters Dialog Box

¢ Optimization Pane

For code generation, see “Performance”

1-183

1 Configuration Parameters Dialog Box

1-184

Inline invariant signals

Transform symbolic names of invariant signals into constant values.

Settings

Default: Off

¥ On
Simulink Coder software uses the numerical values of model
parameters, instead of their symbolic names, in generated code. An

invariant signal is not inline if it is nonscalar, complex, or the block
inport the signal is attached to takes the address of the signal.

™ ofr

Uses symbolic names of model parameters in generated code.

Dependencies

¢ This parameter requires a Simulink Coder license.

¢ This parameter is enabled by Inline parameters.

Command-Line Information

Parameter: InlineInvariantSignals
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency On

Safety precaution No impact

Optimization Pane: Signals and Parameters

See Also
Inlining Invariant Signals

1-185

1 Configuration Parameters Dialog Box

1-186

Optimize global data access
Select global variable optimization.

Settings
Default: None

None
Use default optimizations.

Use global to hold temporary results
Maximize use of global variables.

Minimize global data access
Minimize use of global variables by using local variables to hold
intermediate values.

Dependencies

¢ This parameter is enabled by “Signal storage reuse” on page 1-171.
¢ This parameter requires an Embedded Coder license.

e Appears only for ERT-based targets.

Command-Line Information

Parameter: GlobalvVariableUsage

Type: string

Value: 'None' | 'Use global to hold temporary results' |
'Minimize global data access'

Default: 'None'

Recommended Settings

Application Setting
Debugging Off
Traceability Off

Optimization Pane: Signals and Parameters

Application Setting
Efficiency On (execution, ROM, RAM)
Safety precaution No impact

See Also

® “Signals”

¢ Configuration Parameters Dialog Box
® Optimization Pane

¢ For code generation, see “Performance”

1-187

1 Configuration Parameters Dialog Box

1-188

Simplify array indexing

Replace multiply operations in array indices when accessing arrays in a loop.

Settings
Default: Off

¥ On
In array indices, replace multiply operations with add operations
when accessing arrays in a loop in the generated code. When the
original signal is multidimensional, the Embedded Coder generates
one-dimensional arrays, resulting in multiply operations in the array
indices. Using this setting eliminates costly multiply operations when
accessing arrays in a loop in the C/C++ program. This optimization
(commonly referred to as strength reduction) is particularly useful
if the C/C++ compiler on the target platform does not have similar
functionality. No appearance of multiply operations in the C/C++
program does not imply that the C/C++ compiler does not generate
multiply instructions.

I off
Leave multiply operations in array indices when accessing arrays in
a loop.

Dependencies
This parameter:
® Requires a Embedded Coder license to generate code.

® Appears only for ERT-based targets.

Command-Line Information

Parameter: StrengthReduction
Type: string

Value: 'on' | 'off'

Default: 'off"

Optimization Pane: Signals and Parameters

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

e “Simplify Multiply Operations In Array Indexing”
¢ Configuration Parameters Dialog Box

¢ Optimization Pane

1-189

1 Configuration Parameters Dialog Box

Use memcpy for vector assignment

Optimize code generated for vector assignment by replacing for loops with
memcpy.

Settings
Default: On

¥ On
Enables use of memcpy for vector assignment based on the associated
threshold parameter Memcpy threshold (bytes). memcpy is used in
the generated code if the number of array elements times the number
of bytes per element is greater than or equal to the specified value for
Memcpy threshold (bytes). One byte equals the width of a character
in this context.

™ off

Disables use of memcpy for vector assignment.

Dependencies

¢ This parameter requires a Simulink Coder license.

e When selected, this parameter enables the associated parameter Memcpy
threshold (bytes).

Command-Line Information

Parameter: EnableMemcpy
Type: string

Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-190

Optimization Pane: Signals and Parameters

Application Setting

Efficiency On

Safety precaution No impact
See Also

® “Optimize Code Generated for Vector Assignments”
¢ Optimizing a Model for Code Generation
¢ Configuration Parameters Dialog Box

® Optimization Pane

1-191

1 Configuration Parameters Dialog Box

1-192

Memcpy threshold (bytes)

Specify the minimum array size in bytes for which memcpy function calls
should replace for loops in the generated code for vector assignments.

Settings
Default: 64

Specify the array size, in bytes, at which the code generator begins to use
memcpy instead of for loops for vector assignments.

Dependencies

¢ This parameter requires a Simulink Coder license.

¢ This parameter is enabled when you select Use memcpy for vector
assignment.

Command-Line Information

Parameter: MemcpyThreshold
Type: integer

Value: any valid quantity of bytes
Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Accept default or determine target-specific

optimal value

Safety precaution No impact

Optimization Pane: Signals and Parameters

See Also

“Optimize Code Generated for Vector Assignments”

Optimizing a Model for Code Generation

Configuration Parameters Dialog Box

Optimization Pane

1-193

1 Configuration Parameters Dialog Box

Pack Boolean data into bitfields

Specify whether Boolean signals are stored as one—bit bitfields or as a Boolean
data type.

Note You cannot use this optimization when you generate code for a target
that specifies an explicit structure alignment.

Settings
Default: Off

IFOn

Stores Boolean signals into one—bit bitfields in global block I/O
structures or DWork vectors. This will reduce RAM, but might cause
more executable code.

I off
Stores Boolean signals as a Boolean data type in global block I/0
structures or DWork vectors.

Dependencies
This parameter:
® Requires a Embedded Coder license.

e Appears only for ERT-based targets.

Command-Line Information

Parameter: BooleansAsBitfields
Type: string

Value: 'on' | 'off'

Default: 'off'

1-194

Optimization Pane: Signals and Parameters

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Off (execution, ROM), On (RAM)
Safety precaution No impact
See Also

® “Optimization Pane: General” on page 1-122

e “Bitfield declarator type specifier” on page 1-196

1-195

1 Configuration Parameters Dialog Box

Bitfield declarator type specifier

Specify the bitfield type when selecting configuration parameter “Pack
Boolean data into bitfields” on page 1-194.

Note The optimization benefit is dependent upon your choice of target.

Settings
Default: uint T

W uint_T
The type specified for a bitfield declaration is an unsigned int.

r uchar_T
The type specified for a bitfield declaration is an unsigned char.

Tip

The “Pack Boolean data into bitfields” on page 1-194 configuration parameter
default setting uses unsigned integers. This might cause an increase in RAM
if the bitfields are small and distributed. In this case, uchar_T might use
less RAM depending on your target.

Dependency

Pack Boolean data into bitfields enables this parameter.

Command-Line Information

Parameter: BitfieldContainerType
Type: string

Value: uint T | uchar_T

Default: uint_ T

1-196

Optimization Pane: Signals and Parameters

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target dependent
Safety precaution No impact

See Also

“Pack Boolean data into bitfields” on page 1-194

1-197

1 Configuration Parameters Dialog Box

1-198

Loop unrolling threshold

Specify the minimum signal or parameter width for which a for loop is
generated.

Settings
Default: 5

Specify the array size at which the code generator begins to use a for loop
instead of separate assignment statements to assign values to the elements of
a signal or parameter array.

When there are perfectly nested loops, the code generator uses a for loop if
the product of the loop counts for all loops in the perfect loop nest is greater
than or equal to the threshold.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: RollThreshold
Type: string

Value: any valid value
Default: '5'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency >0

Safety precaution >1

Optimization Pane: Signals and Parameters

See Also

¢ Configuring a Loop Unrolling Threshold

e “Target Language Compiler”

1-199

1 Configuration Parameters Dialog Box

1-200

Maximum stack size (bytes)
Specify the maximum stack size in bytes for your model.

Settings
Default:Inherit from target

Inherit from target
The Simulink Coder software assigns the maximum stack size to the
smaller value of the following:

¢ The default value (200,000 bytes) set by the Simulink Coder software
e Value of the TLC variable MaxStackSize in the system target file

<Specify a value>
Specify a positive integer value. Simulink Coder software assigns the
maximum stack size to the specified value.

Note If you specify a maximum stack size for a model, the estimated
required stack size of a referenced model must be less than the specified
maximum stack size of the parent model.

Tips

e [f you specify the maximum stack size to be zero, then the generated code
implements all variables as global data.

¢ [f you specify the maximum stack to be inf, then the generated code
contains the least number of global variables.

Command-Line Information

Parameter: MaxStackSize
Type: int

Value: Any valid value
Default: Inherit from target

Optimization Pane: Signals and Parameters

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

“Customize Stack Space Allocation” in the Simulink Coder documentation

1-201

1 Configuration Parameters Dialog Box

1-202

Pass reusable subsystem outputs as
Specify how a reusable subsystem passes outputs.

Settings
Default: Structure reference

Structure reference
Passes reusable subsystem outputs as a pointer to a structure stored in
global memory.

Individual arguments
Passes each reusable subsystem output argument as an address of a
local, instead of as a pointer to an area of global memory containing
all output arguments. This option reduces global memory usage and
eliminates copying local variables back to global block I/O structures.
When the signals are allocated as local variables, there may be an
increase in stack size. If the stack size increases beyond a level that
you want, use the default setting. The maximum number of output
arguments passed individually is 12.

Note The default option is used for reusable subsystems that have signals
with variable dimensions.

Dependencies
This parameter:

® Requires a Embedded Coder license.

e Appears only for ERT-based targets.

Command-Line Information

Parameter: PassReuseOutputArgsAs

Type: string

Value: 'Structure reference' | 'Individual arguments'
Default: 'Structure reference'

Optimization Pane: Signals and Parameters

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact (execution), Structure
reference (ROM), Individual arguments
(RAM)

Safety precaution No impact

See Also

¢ Optimizing a Model for Code Generation

1-203

1 Configuration Parameters Dialog Box

1-204

Parameter structure

Control how parameter data is generated for reusable subsystems.

Settings
Default: Hierarchical

Hierarchical
Generates a separate header file, defining an independent parameter
structure, for each subsystem that meets the following conditions:

¢ The subsystem Code generation function packaging parameter
is set to Reusable function.

¢ The subsystem does not violate any code reuse limitations.

¢ The subsystem does not access parameters other than its own (such
as parameters of the root-level model).

Each subsystem parameter structure is referenced as a substructure of

the root-level parameter data structure, creating a structure hierarchy.

NonHierarchical
Generates a single, flat parameter data structure. Subsystem
parameters are defined as fields within the structure. A nonhierarchical
data structure can reduce compiler padding between word boundaries,
producing more efficient compiled code.

Dependencies

¢ This parameter appears only for ERT-based targets.
¢ This parameter requires a Embedded Coder license when generating code.

¢ This parameter is enabled by “Inline parameters” on page 1-167.

Command-Line Information

Parameter: InlinedParameterPlacement
Type: string

Value: 'Hierarchical' | 'NonHierarchical'
Default: 'Hierarchical'

Optimization Pane: Signals and Parameters

Recommended Settings

Application Setting
Debugging No impact
Traceability Hierarchical
Efficiency NonHierarchical
Safety precaution No impact

See Also

® Nonvirtual Subsystem Code Generation

¢ Optimizing a Model for Code Generation

Configuration Parameters Dialog Box

¢ Optimization Pane

1-205

1 Configuration Parameters Dialog Box

Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box allows you to override the
Inline parameters option (see Inline parameters) for selected parameters.

J Model Parameter Configuration: vdp M[=] E3

—Desctiption

Cefine the global (tunable) parameters for your model. These parameters affect:
1. the simulation by providing the ability to tune parameters during execution, and
2. the generated code by enabling access to parametars by other modules.

_ Source list — Global {tunable) parameters
MATLAB workspace :I | Marme | Starage class Starage type qualifier
Marrie
1|balance
2 gain

Refresh list | Pt tatle >>| = | EEmnye |

oK Cancel Help | appy |

Note Simulink software ignores the settings of this dialog box if a model
contains references to other models. However, you can still tune parameters
of such models, using Simulink.Parameter objects (see “Inline Parameter
Requirements” for more information).

The dialog box has the following controls.

Source list
Displays a list of workspace variables. The options are:

* MATLAB workspace — Lists all variables in the MATLAB workspace that
have numeric values.

1-206

Optimization Pane: Signals and Parameters

e Referenced workspace variables — Lists only those variables referenced
by the model.

Refresh list

Updates the source list. Click this button if you have added a variable to the
workspace since the last time the list was displayed.

Add to table

Adds the variables selected in the source list to the adjacent table of tunable
parameters.

New

Defines a new parameter and adds it to the list of tunable parameters. Use
this button to create tunable parameters that are not yet defined in the
MATLAB workspace.

Note This option does not create the corresponding variable in the MATLAB
workspace. You must create the variable yourself.

Storage class

Used for code generation. For more information, see “Storage class” on page
3-8.

Storage type qualifier
Used for code generation. For more information, see “Storage type qualifier”
on page 3-8.

1-207

1 Configuration Parameters Dialog Box

Optimization Pane: Stateflow

When Simulink Coder is installed on your system, the
Optimization > Stateflow pane includes the following parameters:

Code generation

Use bitsets for storing state configuration Use bitsets for storing Boolean data

In this section...

“Optimization Pane: Stateflow Tab Overview” on page 1-209
“Use bitsets for storing state configuration” on page 1-210

“Use bitsets for storing Boolean data” on page 1-212

1-208

Optimization Pane: Stateflow®

Optimization Pane: Stateflow Tab Overview
Set up optimizations for a model’s active configuration set.

Tips
® To open the Optimization: Stateflow pane, in the Simulink

Editor, select Simulation > Model Configuration
Parameters > Optimization > Stateflow.

¢ Simulink Coder optimizations appear only when the Simulink Coder
product is installed on your system.

See Also

® “Optimize Generated Code” in the Stateflow documentation
® “Optimization Pane: Stateflow” on page 1-208

e “Configuration Parameters Dialog Box Overview” on page 1-3

1-209

1 Configuration Parameters Dialog Box

1-210

Use bitsets for storing state configuration

Use bitsets to reduce the amount of memory required to store state
configuration variables.

Settings
Default: Off

¥ On
Stores state configuration variables in bitsets. Potentially reduces the
amount of memory required to store the variables. Potentially requires
more instructions to access state configuration, which can result in
less optimal code.

I off
Stores state configuration variables in unsigned bytes. Potentially
increases the amount of memory required to store the variables.
Potentially requires fewer instructions to access state configuration,
which can result in more optimal code.

Tips

e Selecting this check box can significantly reduce the amount of memory
required to store the variables. However, it can increase the amount of
memory required to store target code if the target processor does not
include instructions for manipulating bitsets.

e Select this check box for Stateflow charts that have a large number of
sibling states at a given level of the hierarchy.

¢ (Clear this check box for Stateflow charts with a small number of sibling
states at a given level of the hierarchy.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: StateBitsets

Optimization Pane: Stateflow®

Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency Off (execution, ROM), On (RAM)
Safety precaution No impact
See Also

® “Optimize Generated Code” in the Stateflow documentation
e “Optimization Pane: Stateflow” on page 1-208

® “Configuration Parameters Dialog Box Overview” on page 1-3

1-211

1 Configuration Parameters Dialog Box

1-212

Use bitsets for storing Boolean data
Use bitsets to reduce the amount of memory required to store Boolean data.

Settings
Default: Off

¥ On
Stores Boolean data in bitsets. Potentially reduces the amount
of memory required to store the data. Potentially requires more
instructions to access the data, which can result in less optimal code.

I off
Stores Boolean data in unsigned bytes. Potentially increases the
amount of memory required to store the data. Potentially requires fewer
instructions to access the data, which can result in more optimal code.

Tips

e Select this check box for Stateflow charts that reference Boolean data
infrequently.

e (Clear this check box for Stateflow charts that reference Boolean data
frequently.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: DataBitsets
Type: string

Value: 'on' | 'off!'
Default: 'off'

Optimization Pane: Stateflow®

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency Off (execution, ROM), On (RAM)
Safety precaution No impact
See Also

® “Optimize Generated Code” in the Stateflow documentation
® “Optimization Pane: Stateflow” on page 1-208

¢ “Configuration Parameters Dialog Box Overview” on page 1-3

1-213

l Configuration Parameters Dialog Box

Diagnostics Pane: Solver

1-214

Select:

- Solver

- Data Import/Export
4 Optimization

- Diagnostics

- Sample Time

- Data Validity

- Type Conversion
- Connectivity

- Compatibility

- Model Referencing
- Saving

- Stateflow

- Model Referencing

+- Simulation Target
+-Code Generation

- Hardware Implementat...

Solver

Algebraic loop: [warning v]
Minimize algebraic loop: [warning v]
Block priority violation: [warning v]
Min step size violation: [warning v]
Sample hit time adjusting: [none v]
Consecutive zero crossings violation: [error v]

Unspecified inheritability of sample time: [warning

Solver data inconsistency: [none

Automatic solver parameter selection: [none

Extraneous discrete derivative signals: [error

State name clash: [warning

SimState interface checksum mismatch: [warning

SimState object from earlier release: [error

In this section...

“Solver Diagnostics Overview” on page 1-216

“Algebraic loop” on page 1-217

“Minimize algebraic loop” on page 1-219

“Block priority violation” on page 1-221

“Min step size violation” on page 1-223

“Sample hit time adjusting” on page 1-225

“Consecutive zero-crossings violation” on page 1-227
“Unspecified inheritability of sample time” on page 1-229
“Solver data inconsistency” on page 1-231

“Automatic solver parameter selection” on page 1-233

Diagnostics Pane: Solver

In this section...

“Extraneous discrete derivative signals” on page 1-235
“State name clash” on page 1-237
“SimState interface checksum mismatch” on page 1-238

“SimState object from earlier release” on page 1-240

1-215

1 Configuration Parameters Dialog Box

1-216

Solver Diagnostics Overview

Specify what diagnostic actions Simulink software should take, if any, when
it detects an abnormal condition with the solver.

Configuration
Set the parameters displayed.

Tips

® To open the Diagnostics: Solver pane, in the Simulink Editor, select
Simulation > Model Configuration Parameters > Diagnostics. The
Solver pane appears.

® The options are typically to do nothing or to display a warning or an error
message.

® A warning does not terminate a simulation, but an error does.

See Also

® Diagnosing Simulation Errors

®* Sample Time Diagnostics

® Data Validity Diagnostics

® Type Conversion Diagnostics

® Connectivity Diagnostics

® Compatibility Diagnostics

® Model Referencing Diagnostics

e Saving Diagnostics

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Solver

Diagnostics Pane: Solver

Algebraic loop

Select the diagnostic action to take if Simulink software detects an algebraic
loop while compiling the model.

Settings
Default: warning

none
When the Simulink software detects an algebraic loop, the software tries
to solve the algebraic loop. If the software cannot solve the algebraic
loop, it reports an error and the simulation terminates.

warning
When Simulink software detects an algebraic loop, it displays a warning
and tries to solve the algebraic loop. If the software cannot solve the
algebraic loop, it reports an error and the simulation terminates.

error
When Simulink software detects an algebraic loop, it terminates the
simulation, displays an error message, and highlights the portion of the
block diagram that comprises the loop.

Tips

® An algebraic loop generally occurs when an input port with direct
feedthrough is driven by the output of the same block, either directly, or by
a feedback path through other blocks with direct feedthrough. An example
of an algebraic loop is this simple scalar loop.

u

—wl+ |,
® When a model contains an algebraic loop, Simulink software calls a
loop-solving routine at each time step. The loop solver performs iterations

to determine the solution to the problem (if it can). As a result, models with
algebraic loops run slower than models without them.

1-217

1 Configuration Parameters Dialog Box

e Use the error option to highlight algebraic loops when you simulate a
model. This causes Simulink software to display an error dialog (the
Diagnostic Viewer) and recolor portions of the diagram that represent the
first algebraic loop that it detects. Simulink software uses red to color the
blocks and lines that constitute the loop. Closing the error dialog restores
the diagram to its original colors.

e See Algebraic Loops for more information.

Command-Line Information

Parameter: AlgebraiclLoopMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging error

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Algebraic Loops
® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Solver

1-218

Diagnostics Pane:

Solver

Minimize algebraic loop

Select the diagnostic action to take if artificial algebraic loop minimization
cannot be performed for an atomic subsystem or Model block because an input
port has direct feedthrough.

When you set the Minimize algebraic loop occurrences parameter for an

atomic subsystem or a Model block, if Simulink detects an artificial algebraic

loop, it attempts to eliminate the loop by checking for non-direct-feedthrough

blocks before simulating the model. If Simulink cannot minimize the artificial
algebraic loop, the simulation performs the diagnostic action specified by the

Minimize algebraic loop parameter.

Settings
Default: warning

none
Simulink takes no action.

warning
Simulink displays a warning that it cannot minimize the artificial
algebraic loop.

error
Simulink terminates the simulation and displays an error that it cannot
minimize the artificial algebraic loop.

Tips

e [f the port is involved in an artificial algebraic loop, Simulink software
can remove the loop only if at least one other input port in the loop lacks
direct feedthrough.

¢ Simulink software cannot minimize artificial algebraic loops containing
signals designated as test points (see Working with Test Points).

1-219

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: ArtificialAlgebraicLoopMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Minimizing Artificial Algebraic Loops Using Simulink
® Diagnosing Simulation Errors

® Working with Test Points

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Solver

1-220

Diagnostics Pane: Solver

Block priority violation

Select the diagnostic action to take if Simulink software detects a block
priority specification error.

Settings
Default: warning

warning
When Simulink software detects a block priority specification error, it
displays a warning.

error

When Simulink software detects a block priority specification error, it
terminates the simulation and displays an error message.

Tips

¢ Simulink software allows you to assign update priorities to blocks.
Simulink software executes the output methods of higher priority blocks
before those of lower priority blocks.

¢ Simulink software honors the block priorities that you specify only if they
are consistent with the Simulink block sorting algorithm. If Simulink
software is unable to honor a user specified block priority, it generates
a block priority specification error.

Command-Line Information

Parameter: BlockPriorityViolationMsg
Type: string

Value: 'warning' | 'error'

Default: 'warning'

1-221

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

¢ Controlling and Displaying the Sorted Order
® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Solver

1-222

Diagnostics Pane: Solver

Min step size violation

Select the diagnostic action to take if Simulink software detects that the next
simulation step is smaller than the minimum step size specified for the model.

Settings
Default: warning

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

¢ A minimum step size violation can occur if the specified error tolerance for
the model requires a step size smaller than the specified minimum step
size. See Min step size and Maximum order for more information.

¢ Simulink software allows you to specify the maximum number of
consecutive minimum step size violations permitted (see Number of
consecutive min steps).

Command-Line Information

Parameter: MinStepSizeMsg
Type: string

Value: 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-223

1 Configuration Parameters Dialog Box

1-224

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

e Min step size

® Maximum order

¢ Number of consecutive min steps

® “Purely Discrete Systems”

® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Solver

Diagnostics Pane:

Solver

Sample hit time adjusting

Select the diagnostic action to take if Simulink software makes a minor
adjustment to a sample hit time while running the model.

Settings
Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

Tips

Simulink software might change a sample hit time if that hit time is
close to the hit time for another task. If Simulink software considers the
difference to be due only to numerical errors (for example, precision issues
or roundoff errors), it changes the sample hits of the faster task or tasks to
exactly match the time of the slowest task that has that hit.

Over time, these sample hit changes might cause a discrepancy between
the numerical simulation results and the actual theoretical results.

When this option is set to warning, the MATLAB Command Window
displays a warning like the following when Simulink software detects a
change in the sample hit time:

Warning: Timing engine warning: Changing the hit time for

Command-Line Information

Parameter: TimeAdjustmentMsg
Type: string

Value: 'none' | 'warning'
Default: 'none'’

1-225

1 Configuration Parameters Dialog Box

1-226

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Solver

Diagnostics Pane: Solver

Consecutive zero-crossings violation

Select the diagnostic action to take when Simulink software detects that the
number of consecutive zero crossings exceeds the specified maximum.

Settings
Default: error

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

e If you select warning or error, Simulink software reports the current
simulation time, the number of consecutive zero crossings counted, and
the type and name of the block in which Simulink software detected the
Zero crossings.

® For more information, see Preventing Excessive Zero Crossings.

Dependency

This diagnostic applies only when you are using a variable-step solver and the
zero-crossing control is set to either Enable all or Use local settings.

Command-Line Information

Parameter: MaxConsecutiveZCsMsg
Type: string

Value: 'none' | 'warning'

Default: 'error'

1-227

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution warning or error
See Also

e Zero-Crossing Detection

® Zero-Crossing Control

e Number of consecutive zero crossings
* Time tolerance

® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Solver

1-228

Diagnostics Pane:

Solver

Unspecified inheritability of sample time

Select the diagnostic action to take if this model contains S-functions that do
not specify whether they preclude this model from inheriting their sample
times from a parent model.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® Not specifying an inheritance rule may lead to incorrect simulation results.

e Simulink software checks for this condition only if the solver used to
simulate this model is a fixed-step discrete solver and the periodic sample
time constraint for the solver is set to ensure sample time independence

® For more information, see Periodic sample time constraint.

Command-Line Information

Parameter: UnknownTsInhSupMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

1-229

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Periodic sample time constraint
® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Solver

1-230

Diagnostics Pane: Solver

Solver data inconsistency

Select the diagnostic action to take if Simulink software detects S-functions
that have continuous sample times, but do not produce consistent results
when executed multiple times.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® Consistency checking can cause a significant decrease in performance (up
to 40%).

® (Consistency checking is a debugging tool that validates certain assumptions
made by Simulink ODE solvers. Use this option to:

= Validate your S-functions and ensure that they adhere to the same rules
as Simulink built-in blocks.

= Determine the cause of unexpected simulation results.

= Ensure that blocks produce constant output when called with a given
value of ¢ (time).

¢ Simulink software saves (caches) output, the zero-crossing, the derivative,
and state values from one time step for use in the next time step. The value
at the end of a time step can generally be reused at the start of the next
time step. Solvers, particularly stiff solvers such as ode23s and ode15s,
take advantage of this to avoid redundant calculations. While calculating
the Jacobian matrix, a stiff solver can call a block’s output functions many
times at the same value of t.

1-231

1 Configuration Parameters Dialog Box

® When consistency checking is enabled, Simulink software recomputes the
appropriate values and compares them to the cached values. If the values
are not the same, a consistency error occurs. Simulink software compares
computed values for these quantities:

= Outputs
= Zero crossings
= Derivatives

= States

Command-Line Information

Parameter: ConsistencyChecking
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency none

Safety precaution No impact
See Also

® Diagnosing Simulation Errors

® Choosing a Solver

Configuration Parameters Dialog Box

Diagnostics Pane: Solver

1-232

Diagnostics Pane:

Solver

Automatic solver parameter selection

Select the diagnostic action to take if Simulink software changes a solver
parameter setting.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips
When enabled, this option notifies you if:

¢ Simulink software changes a user-modified parameter to make it consistent
with other model settings.

¢ Simulink software automatically selects solver parameters for the model,
such as FixedStepSize.

For example, if you simulate a discrete model that specifies a continuous
solver, Simulink software changes the solver type to discrete and displays a
warning about this change at the MATLAB command line.

Command-Line Information

Parameter: SolverPrmCheckMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

1-233

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors
® Choosing a Solver
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Solver

1-234

Diagnostics Pane: Solver

Extraneous discrete derivative signals

Select the diagnostic action to take when a discrete signal appears to pass
through a Model block to the input of a block with continuous states.

Settings
Default: error

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

¢ This error can occur if a discrete signal passes through a Model block to
the input of a block with continuous states, such as an Integrator block. In
this case, Simulink software cannot determine with certainty the minimum
rate at which it needs to reset the solver to solve this model accurately.

¢ [f this diagnostic is set to none or warning, Simulink software resets the
solver whenever the value of the discrete signal changes. This ensures
accurate simulation of the model if the discrete signal is the source of the
signal entering the block with continuous states. However, if the discrete
signal is not the source of the signal entering the block with continuous
states, resetting the solver at the rate the discrete signal changes can lead
to the solver being reset more frequently than necessary, slowing down
the simulation.

¢ [f this diagnostic is set to error, Simulink software halts when compiling
this model and displays an error.

Dependency

This diagnostic applies only when you are using a variable-step ode solver and
the block diagram contains Model blocks.

1-235

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: ModelReferenceExtraNoncontSigs
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'error'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Diagnosing Simulation Errors
® Choosing a Solver
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Solver

1-236

Diagnostics Pane:

Solver

State name clash

Select the diagnostic action to take when a name is used for more than one
state in the model.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

Tips

¢ This diagnostic applies for continuous and discrete states during
simulation.

¢ This diagnostic applies only if you save states to the MATLAB workspace
using the format Structure or Structure with time. If you do not save
states in structure format, the state names are not used, and therefore the
diagnostic will not warn you about a naming conflict.

Command-Line Information

Parameter: StateNameClashWarn
Type: string

Value: 'none' | 'warning'
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-237

1 Configuration Parameters Dialog Box

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

® Diagnosing Simulation Errors
® Data Import/Export Pane
¢ “Export Runtime Information”

¢ Configuration Parameters Dialog Box

Diagnostics Pane: Solver

SimState interface checksum mismatch

Use this check to ensure that the interface checksum is identical to the model
checksum before loading the SimState.

Settings
Default: warning

none
Simulink software does not compare the interface checksum to the
model checksum.

warning
The interface checksum in the SimState is different than the model
checksum.

error
When Simulink detects that a change in the configuration settings
occurred after saving the SimState, it does not load the SimState and
reports an error.

Command-Line Information

Parameter: SimStateInterfaceChecksumMismatchMsg

1-238

Diagnostics Pane: Solver

Type: string
Value: 'warning' | 'error' | 'none'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

e “Save and Restore Simulation State as SimState”

e Simulink.BlockDiagram.getChecksum

1-239

1 Configuration Parameters Dialog Box

SimState object from earlier release

Use this check to report that the SimState was generated by an earlier
version of Simulink.

Settings
Default: error

warning
Simulink will restore as much of this SimState as possible.

error
When Simulink detects that the SimState was generated by an earlier
version of Simulink, it does not attempt to load the object.

Command-Line Information

Parameter: SimStateOlderReleaseMsg
Type: string

Value: 'warning' | 'error'

Default: 'error'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

“Save and Restore Simulation State as SimState”

1-240

Diagnostics Pane: Sample Time

Diagnostics Pane: Sample Time

— Sample Time
Source block specifies -1 sample time: Iwarning j
Dizcrete used as continuous: Iwarning j
Multitask, rate transition; Ierrl:nr j
Single tazk rate tranzition; Inl:une j
Multitazk. conditionally executed subspsten: Ierrl:nr j
T azks with equal pricrity; Iwarning j
Enforce sample times specified by Signal S pecification blocks: Iwarning j

In this section...

“Sample Time Diagnostics Overview” on page 1-242
“Source block specifies -1 sample time” on page 1-243
“Discrete used as continuous” on page 1-245

“Multitask rate transition” on page 1-247

“Single task rate transition” on page 1-249

“Multitask conditionally executed subsystem” on page 1-251
“Tasks with equal priority” on page 1-253

“Enforce sample times specified by Signal Specification blocks” on page
1-255

1-241

1 Configuration Parameters Dialog Box

1-242

Sample Time Diagnostics Overview

Specify what diagnostic actions Simulink software should take, if any, when
it detects a compilation error related to model sample times.

Configuration
Set the parameters displayed.

Tips

e To open the Sample Time pane, in the Simulink
Editor, select Simulation > Model Configuration
Parameters > Diagnostics > Sample Time.

® The options are typically to do nothing or to display a warning or an error
message.

® A warning does not terminate a simulation, but an error does.

See Also

® Diagnosing Simulation Errors

e Solver Diagnostics

® Data Validity Diagnostics

® Type Conversion Diagnostics

® Connectivity Diagnostics

® Compatibility Diagnostics

® Model Referencing Diagnostics

e Saving Diagnostics

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Sample Time

Diagnostics Pane: Sample Time

Source block specifies -1 sample time

Select the diagnostic action to take if a source block (such as a Sine Wave
block) specifies a sample time of -1.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® The Random Source block does not obey this parameter. If its Sample
time parameter is set to -1, the Random Source block inherits its sample
time from its output port and never produces warnings or errors.

® Some Communications System Toolbox™ blocks internally inherit sample
times, which can be a useful and valid modeling technique. Set this
parameter to none for these types of models.

Command-Line Information

Parameter: InheritedTsInSrcMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

1-243

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Sample Time

1-244

Diagnostics Pane: Sample Time

Discrete used as continuous

Select the diagnostic action to take if a discrete block (such as the Unit Delay
block), inherits a continuous sample time from the block connected to its input.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Command-Line Information

Parameter: DiscreteInheritContinuousMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors

1-245

1 Configuration Parameters Dialog Box

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Sample Time

1-246

Diagnostics Pane: Sample Time

Multitask rate transition

Select the diagnostic action to take if an invalid rate transition occurred
between two blocks operating in multitasking mode.

Settings
Default: error

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

¢ This parameter allows you to adjust error checking for sample rate
transitions between blocks that operate at different sample rates.

e Use this option for models of real-time multitasking systems to ensure
detection of illegal rate transitions between tasks that can result in a
task’s output being unavailable when needed by another task. You can
then use Rate Transition blocks to eliminate such illegal rate transitions
from the model.

Command-Line Information

Parameter: MultiTaskRateTransMsg
Type: string

Value: 'warning' | 'error'

Default: 'error'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-247

1 Configuration Parameters Dialog Box

1-248

Application Setting

Efficiency No impact

Safety precaution error
See Also

® Rate Transition block

® Model Execution and Rate Transitions

® Single-Tasking and Multitasking Execution Modes
¢ “Handle Rate Transitions”

¢ Tasking mode for periodic sample times

® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Sample Time

Diagnostics Pane: Sample Time

Single task rate transition

Select the diagnostic action to take if a rate transition occurred between two
blocks operating in single-tasking mode.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips
¢ This parameter allows you to adjust error checking for sample rate
transitions between blocks that operate at different sample rates.

e Use this parameter when you are modeling a single-tasking system. In
such systems, task synchronization is not an issue.

Command-Line Information

Parameter: SingleTaskRateTransMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-249

1 Configuration Parameters Dialog Box

1-250

Application Setting

Efficiency No impact

Safety precaution none or error
See Also

® Rate Transition block

® Model Execution and Rate Transitions

® Single-Tasking and Multitasking Execution Modes
¢ “Handle Rate Transitions”

¢ Tasking mode for periodic sample times

® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Sample Time

Diagnostics Pane: Sample Time

Multitask conditionally executed subsystem

Select the diagnostic action to take if Simulink software detects a subsystem
that may cause data corruption or non-deterministic behavior.

Settings
Default: error

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® These types of subsystems can be caused by either of the following
conditions:

= Your model uses multitasking solver mode and it contains an enabled
subsystem that operates at multiple rates.

= Your model contains a conditionally executed subsystem that can reset
its states and that contains an asynchronous subsystem.

These types of subsystems can cause corrupted data or nondeterministic

behavior in a real-time system that uses code generated from the model.

® For models that use multitasking solver mode and contain an enabled
subsystem that operates at multiple rates, consider using single-tasking
solver mode or using a single-rate enabled subsystem instead.

® For models that contain a conditionally executed subsystem that can reset
its states and that contains an asynchronous subsystem, consider moving
the asynchronous subsystem outside the conditionally executed subsystem.

1-251

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: MultiTaskCondExecSysMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

¢ Tasking mode for periodic sample times
® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Sample Time

1-252

Diagnostics Pane: Sample Time

Tasks with equal priority

Select the diagnostic action to take if Simulink software detects two tasks
with equal priority that can preempt each other in the target system.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

¢ This condition can occur when one asynchronous task of the target
represented by this model has the same priority as one of the target’s
asynchronous tasks.

¢ This option must be set to Error if the target allows tasks having the same
priority to preempt each other.

Command-Line Information
Parameter: TasksWithSamePriorityMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-253

1 Configuration Parameters Dialog Box

1-254

Application Setting

Efficiency No impact

Safety precaution none or error
See Also

® Diagnosing Simulation Errors

“Rate Transitions and Asynchronous Blocks”

Configuration Parameters Dialog Box

Diagnostics Pane: Sample Time

Diagnostics Pane: Sample Time

Enforce sample times specified by Signal Specification
blocks

Select the diagnostic action to take if the sample time of the source port of
a signal specified by a Signal Specification block differs from the signal’s
destination port.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

¢ The Signal Specification block allows you to specify the attributes of the
signal connected to its input and output ports. If the specified attributes
conflict with the attributes specified by the blocks connected to its ports,
Simulink software displays an error when it compiles the model, for
example, at the beginning of a simulation. If no conflict exists, Simulink
software eliminates the Signal Specification block from the compiled model.

® You can use the Signal Specification block to ensure that the actual
attributes of a signal meet desired attributes, or to ensure correct
propagation of signal attributes throughout a model.

Command-Line Information

Parameter: SigSpecEnsureSampleTimeMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

1-255

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors
e Signal Specification block
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Sample Time

1-256

Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

—Data validity

—Signals
Signal resalution: IEpricit anly ;I Detect averflow: Iwarning LI
Division by singular matriz: Inune j Inf or Mak block output: Inu:une ;l
Underspecified data types: Inune j "rt* prefix For identifisrs: Ierrnr LI
Simulation range checking: Inune j

—Parameters
Debeck downcast: Ierrur ;l Detect overflow: Ierru:ur ;l
Detect underflow: Inu:une ;l Detect precision loss: Iwarning LI
Detect loss of tunability: Iwarning LI

—Data Store Memory Block.

Detect read before write: IUse local setkings LI Multitask data store: Ierrnr LI

Detect write after read: ILIse local settings LI Duplicate daka store names: Inu:une LI

Detect write after write: ILIse local settings ll

—Merge Block

Detect multiple driving blocks executing at the same time skep: Inune LI

—Model Initialization

Underspecified initialization detection: | Classic LI
v Check undefined subsyskern initial autput
[check preactivation oukput of execution conte:t

[cCheck runtime output of execution context

—Debugging

Array bounds exceeded: Inune

KA NEN

Madel Yerification block enabling: ILIse lacal settings

1-257

1 Configuration Parameters Dialog Box

1-258

In this section...

“Data Validity Diagnostics Overview” on page 1-259
“Signal resolution” on page 1-260

“Division by singular matrix” on page 1-262
“Underspecified data types” on page 1-264
“Simulation range checking” on page 1-266
“Detect overflow” on page 1-268

“Inf or NaN block output” on page 1-270
“'rt" prefix for identifiers” on page 1-272
“Detect downcast” on page 1-274

“Detect overflow” on page 1-276

“Detect underflow” on page 1-278

“Detect precision loss” on page 1-280
“Detect loss of tunability” on page 1-282
“Detect read before write” on page 1-284
“Detect write after read” on page 1-286
“Detect write after write” on page 1-288
“Multitask data store” on page 1-290
“Duplicate data store names” on page 1-292

“Detect multiple driving blocks executing at the same time step” on page
1-294

“Underspecified initialization detection” on page 1-296

“Check undefined subsystem initial output” on page 1-299
“Check preactivation output of execution context” on page 1-303
“Check runtime output of execution context” on page 1-307
“Array bounds exceeded” on page 1-311

“Model Verification block enabling” on page 1-313

Diagnostics Pane: Data Validity

Data Validity Diagnostics Overview

Specify what diagnostic action Simulink software should take, if any, when
it detects a condition that could compromise the integrity of data defined
by the model, as well as the Data Validity parameters that pertain to code
generation, and are used to debug a model.

Configuration
Set the parameters displayed.

Tips

e To open the Data Validity pane, in the Simulink
Editor, select Simulation > Model Configuration
Parameters > Diagnostics > Data Validity.

® The options are typically to do nothing or to display a warning or an error
message.

® A warning does not terminate a simulation, but an error does.

See Also

® Diagnosing Simulation Errors

e Solver Diagnostics

®* Sample Time Diagnostics

® Type Conversion Diagnostics

® Connectivity Diagnostics

® Compatibility Diagnostics

® Model Referencing Diagnostics

e Saving Diagnostics

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-259

1 Configuration Parameters Dialog Box

1-260

Signal resolution

Select how Simulink software resolves signals to Simulink.Signal objects.
See “Explicit and Implicit Symbol Resolution” for more information.

Settings
Default: Explicit only

Explicit only
Do not perform implicit signal resolution. Only explicitly specified
signal resolution occurs. This is the recommended setting.

Explicit and implicit
Perform implicit signal resolution wherever possible, without posting
any warnings about the implicit resolutions.

Explicit and warn implicit
Perform implicit signal resolution wherever possible, posting a warning
of each implicit resolution that occurs.

Tips

e Use the Signal Properties dialog box (see Signal Properties Dialog Box) to
specify explicit resolution for signals.

¢ Use the State Attributes pane on dialog boxes of blocks that have discrete
states, e.g., the Discrete-Time Integrator block, to specify explicit resolution
for discrete states.

e Multiple signals can resolve to the same signal object and have the
properties that the object specifies.

e MathWorks® discourages using implicit signal resolution except for fast
prototyping, because implicit resolution slows performance, complicates
model validation, and can have nondeterministic effects.

¢ Simulink software provides the disableimplicitsignalresolution
function, which you can use to change settings throughout a model so that
it does not use implicit signal resolution.

Diagnostics Pane: Data Validity

Command-Line Information

Parameter: SignalResolutionControl

Type: string

Value: 'UselLocalSettings' | 'TryResolveAll' |
‘TryResolveAllWithWarning'

Default: 'UseLocalSettings'

SignalResolutionControl Value | Equivalent Signal Resolution
Value

'UseLocalSettings' Explicit only
'TryResolveAll’ Explicit and implicit
'TryResolveAllWithWarning' Explicit and warn implicit

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Explicit only

See Also

® Diagnosing Simulation Errors

® Simulink.Signal

Signal Properties Dialog Box

Discrete-Time Integrator block

Configuration Parameters Dialog Box

Diagnostics Pane: Data Validity

1-261

1 Configuration Parameters Dialog Box

1-262

Division by singular matrix
Select the diagnostic action to take if the Product block detects a singular
matrix while inverting one of its inputs in matrix multiplication mode.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Command-Line Information

Parameter: CheckMatrixSingularityMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors

Diagnostics Pane: Data Validity

® Product block
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-263

1 Configuration Parameters Dialog Box

1-264

Underspecified data types

Select the diagnostic action to take if Simulink software could not infer the
data type of a signal during data type propagation.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Command-Line Information

Parameter: UnderSpecifiedDataTypeMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors

Diagnostics Pane: Data Validity

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-265

1 Configuration Parameters Dialog Box

1-266

Simulation range checking

Select the diagnostic action to take when signals exceed specified minimum
or maximum values.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

¢ Use a block’s Output minimum or Minimum parameter to specify the
minimum value that the block should output.

¢ Use a block’s Output maximum or Maximum parameter to specify the
maximum value that the block should output.

® Enable this diagnostic to check whether block outputs exceed the minimum
or maximum values that you specified.

® When Simulation range checking is enabled, Simulink software
performs signal range checking at every time step during a simulation.
Setting this diagnostic to warning or error can cause a decrease in
simulation performance.

Command-Line Information

Parameter: SignalRangeChecking
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Diagnostics Pane

: Data Validity

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

warning or error
warning or error
none

error

See Also

® “Signal Ranges”

® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-267

1 Configuration Parameters Dialog Box

1-268

Detect overflow

Select the diagnostic action to take if the value of a signal is too large to be
represented by the signal data type.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

¢ This diagnostic applies only to overflows for integer and fixed-point data
types.
® To check for floating-point overflows (e.g., Inf or NaN) for double or single

data types, select the Inf or NaN block output diagnostic. (See “Inf or
NaN block output” on page 1-270 for more information.)

Command-Line Information

Parameter: IntegerOverflowMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Diagnostics Pane: Data Validity

Application Setting

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors
® “About Data Stores”
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-269

1 Configuration Parameters Dialog Box

1-270

Inf or NaN block output

Select the diagnostic action to take if the value of a block output is Inf or
NaN at the current time step.

Note Accelerator mode does not support runtime diagnostics.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® This diagnostic applies only to floating-point overflows for double or
single data types.

® To check for integer and fixed-point overflows, select the Detect overflow
diagnostic. (See “Detect overflow” on page 1-268 for more information.)

Command-Line Information

Parameter: SignalInfNanChecking
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'

Diagnostics Pane: Data Validity

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

error

See Also

® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-271

1 Configuration Parameters Dialog Box

1-272

"ri" prefix for identifiers

Select the diagnostic action to take during code generation if a Simulink object
name (the name of a parameter, block, or signal) begins with rt.

Settings
Default: error

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® The default setting (error) causes code generation to terminate with an
error if it encounters a Simulink object name (parameter, block, or signal),
that begins with rt.

¢ This is intended to prevent inadvertent clashes with generated identifiers
whose names begins with rt.

Command-Line Information
Parameter: RTPrefix
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Diagnostics Pane: Data Validity

Application Setting

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-273

1 Configuration Parameters Dialog Box

Detect downcast

Select the diagnostic action to take when a parameter downcast occurs during
simulation.

Settings
Default: error
none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® A parameter downcast occurs if the computation of block output required
converting the parameter’s specified type to a type having a smaller range
of values (for example, from uint32 to uints).

® This diagnostic applies only to named tunable parameters.

Command-Line Information

Parameter: ParameterDowncastMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-274

Diagnostics Pane: Data Validity

Application Setting

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-275

1 Configuration Parameters Dialog Box

1-276

Detect overflow

Select the diagnostic action to take if a parameter overflow occurs during
simulation.

Settings
Default: error

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® A parameter overflow occurs if Simulink software encounters a parameter
whose data type’s range is not large enough to accommodate the
parameter’s ideal value (the ideal value is either too large or too small to be
represented by the data type). For example, suppose that the parameter’s
1deal value is 200 and its data type is int8. Overflow occurs in this case
because the maximum value that int8 can represent is 127.

e Parameter overflow differs from parameter precision loss, which occurs
when the ideal parameter value is within the range of the data type and
scaling being used, but cannot be represented exactly.

® Both parameter overflow and precision loss are quantization errors, and
the distinction between them can be a fine one. The Detect overflow
diagnostic reports all quantization errors greater than one bit. For very
small parameter quantization errors, precision loss will be reported rather
than an overflow when

(Max + Slope) 2 V;goq; > (Min — Slope)
where

= Max is the maximum value representable by the parameter data type

Diagnostics Pane: Data Validity

= Min is the minimum value representable by the parameter data type
= Slope is the slope of the parameter data type (slope = 1 for integers)

= V... 1s the ideal value of the parameter

Command-Line Information

Parameter: ParameterOverflowMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-277

1 Configuration Parameters Dialog Box

1-278

Detect underflow

Select the diagnostic action to take when a parameter underflow occurs
during simulation.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® Parameter underflow occurs when Simulink software encounters a
parameter whose data type does not have enough precision to represent the
parameter’s ideal value because the ideal value is too small.

® When parameter underflow occurs, casting the ideal value to the data type
causes the parameter’s modeled value to become zero, and therefore to
differ from its ideal value.

Command-Line Information

Parameter: ParameterUnderflowMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Diagnostics Pane: Data Validity

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

error

See Also

® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-279

1 Configuration Parameters Dialog Box

1-280

Detect precision loss

Select the diagnostic action to take when parameter precision loss occurs
during simulation.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

¢ Precision loss occurs when Simulink software encounters a parameter
whose data type does not have enough precision to represent the
parameter’s value exactly. As a result, the modeled value differs from the
ideal value.

e Parameter precision loss differs from parameter overflow, which occurs
when the range of the parameter’s data type, i.e., that maximum value that
it can represent, is smaller than the ideal value of the parameter.

® Both parameter overflow and precision loss are quantization errors, and
the distinction between them can be a fine one. The Detect Parameter
overflow diagnostic reports all parameter quantization errors greater
than one bit. For very small parameter quantization errors, precision loss
will be reported rather than an overflow when
(Max + Slope) 2 V;goq; > (Min — Slope)
where

= Max is the maximum value representable by the parameter data type.

= Min is the minimum value representable by the parameter data type.

Diagnostics Pane: Data Validity

= Slope is the slope of the parameter data type (slope = 1 for integers).

= V... 1s the full-precision, ideal value of the parameter.

Command-Line Information

Parameter: ParameterPrecisionLossMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-281

1 Configuration Parameters Dialog Box

1-282

Detect loss of tunability

Select the diagnostic action to take when an expression with tunable variables
is reduced to its numerical equivalent.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tip

If a tunable workspace variable is modified by Mask Initialization code, or is
used in an arithmetic expression with unsupported operators or functions, the
expression is reduced to a numeric expression and therefore cannot be tuned.

Command-Line Information

Parameter: ParameterTunabilitylLossMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Diagnostics Pane: Data Validity

See Also

® Diagnosing Simulation Errors
e Tunable Expressions
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-283

1 Configuration Parameters Dialog Box

1-284

Detect read before write

Select the diagnostic action to take if the model attempts to read data from a
data store to which it has not written data in this time step.

Settings
Default: Use local settings

Use local settings
For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified
by the block. For each global data store (defined by a Simulink.Signal
object in the base workspace) disable the diagnostic.

Disable all
Disables this diagnostic for all data stores accessed by the model.

Enable all as warnings
Displays diagnostic as a warning at the MATLAB command line.

Enable all as errors
Halts the simulation and displays the diagnostic in an error dialog box.

Command-Line Information

Parameter: ReadBeforeWriteMsg

Type: string

Value: 'UseLocalSettings' | 'DisableAll' | 'EnableAllAsWarning' |
'EnableAllAsError'

Default: 'UseLocalSettings'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors

Diagnostics Pane: Data Validity

See Also

¢ Diagnosing Simulation Errors

® “About Data Stores”

e Data Store Memory block

® Simulink.Signal object

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-285

1 Configuration Parameters Dialog Box

1-286

Detect write after read

Select the diagnostic action to take if the model attempts to write data to a
data store after previously reading data from it in the current time step.

Settings
Default: Use local settings

Use local settings
For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified
by the block. For each global data store (defined by a Simulink.Signal
object in the base workspace) disable the diagnostic.

Disable all
Disables this diagnostic for all data stores accessed by the model.

Enable all as warnings
Displays diagnostic as a warning at the MATLAB command line.

Enable all as errors
Halts the simulation and displays the diagnostic in an error dialog box.

Command-Line Information

Parameter: WriteAfterReadMsg

Type: string

Value: 'UseLocalSettings' | 'DisableAll' | 'EnableAllAsWarning' |
'EnableAllAsError'

Default: 'UseLocalSettings'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors

Diagnostics Pane: Data Validity

See Also

¢ Diagnosing Simulation Errors

® “About Data Stores”

e Data Store Memory block

® Simulink.Signal object

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-287

1 Configuration Parameters Dialog Box

1-288

Detect write after write

Select the diagnostic action to take if the model attempts to write data to a
data store twice in succession in the current time step.

Settings
Default: Use local settings

Use local settings
For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified
by the block. For each global data store (defined by a Simulink.Signal
object in the base workspace) disable the diagnostic.

Disable all
Disables this diagnostic for all data stores accessed by the model.

Enable all as warnings
Displays diagnostic as a warning at the MATLAB command line.

Enable all as errors
Halts the simulation and displays the diagnostic in an error dialog box.

Command-Line Information

Parameter: WriteAfterWriteMsg

Type: string

Value: 'UseLocalSettings' | 'DisableAll' | 'EnableAllAsWarning' |
'EnableAllAsError'

Default: 'UseLocalSettings'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors

Diagnostics Pane: Data Validity

See Also

¢ Diagnosing Simulation Errors

® “About Data Stores”

e Data Store Memory block

® Simulink.Signal object

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-289

1 Configuration Parameters Dialog Box

1-290

Multitask data store

Select the diagnostic action to take when one task reads data from a Data
Store Memory block to which another task writes data.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® Such a situation is safe only if one of the tasks cannot interrupt the other,
such as when the data store is a scalar and the writing task uses an atomic
copy operation to update the store or the target does not allow the tasks to
preempt each other.

® You should disable this diagnostic (set it to none) only if the application
warrants it, such as if the application uses a cyclic scheduler that prevents
tasks from preempting each other.

Command-Line Information

Parameter: MultiTaskDSMMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Diagnostics Pane: Data Validity

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

error

See Also

® Diagnosing Simulation Errors

® “About Data Stores”
® Data Store Memory block
® Simulink.Signal object

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-291

1 Configuration Parameters Dialog Box

Duplicate data store names

Select the diagnostic action to take when the model contains multiple data
stores that have the same name. The data stores can be defined with Data
Store Memory blocks or Simulink.Signal objects.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tip

This diagnostic is useful for detecting errors that can occur when a lower-level
data store unexpectedly shadows a higher-level data store that has the same
name.

Command-Line Information

Parameter: UniqueDataStoreMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-292

Diagnostics Pane: Data Validity

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

® Diagnosing Simulation Errors

® “About Data Stores”

® Data Store Memory block

® Simulink.Signal object

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-293

1 Configuration Parameters Dialog Box

1-294

Detect multiple driving blocks executing at the same
time step

Select the diagnostic action to take when the software detects a Merge block
with more than one driving block executing at the same time step.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® Connecting the inputs of a Merge block to multiple driving blocks that
execute at the same time step can lead to inconsistent results for both
simulation and generated code. Set Detect multiple driving blocks
executing at the same time step to error to avoid such situations.

¢ [f Underspecified initialization detection is set to Simplified,
this parameter is disabled, and Simulink software automatically uses
the strictest setting (error) for this diagnostic. Multiple driving blocks
executing at the same time step always result in an error.

Dependency
This parameter is enabled only if Underspecified initialization detection
is set to Classic.

Diagnostics Pane: Data Validity

Command-Line Information

Parameter: MergeDetectMultiDrivingBlocksExec
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'none'’

Recommended Settings

Application Setting

Debugging error

Traceability error

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors
® Merge block

¢ “Check consistency of initialization parameters for Outport and Merge
blocks”

¢ “Underspecified initialization detection” on page 1-296
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-295

1 Configuration Parameters Dialog Box

1-296

Underspecified initialization detection
Select how Simulink software handles initialization of initial conditions for

conditionally executed subsystems, Merge blocks, subsystem elapsed time,
and Discrete-Time Integrator blocks.

Settings
Default: Classic

Classic
Initial conditions are initialized the same way they were prior to R2008b.

Simplified
Initial conditions are initialized using the enhanced behavior, which can
improve the consistency of simulation results.

Tips

e Use Classic to ensure compatibility with previous releases of Simulink.

e Use Simplified to improve the consistency of simulation results, especially
for models that do not specify initial conditions for conditional subsystem
output ports, and for models that have conditionally executed subsystem
output ports connected to S-functions.

® When using Simplified initialization mode, you must set both Mux
blocks used to create bus signals, and Bus signal treated as vector
to error on the Connectivity Diagnostics pane.

® For existing models, MathWorks recommends using the Model Advisor to

migrate your model to the new settings. To migrate your model, run the
following Model Advisor checks:

= Check bus usage

= Check consistency of initialization parameters for Outport and
Merge blocks

For more information, see “Check consistency of initialization parameters
for Outport and Merge blocks”.

Diagnostics Pane: Data Validity

Dependencies
Selecting Classic enables the following parameters:

¢ Detect multiple driving blocks executing at the same time step
¢ Check undefined subsystem initial output

¢ Check preactivation output of execution context

¢ Check runtime output of execution context

Selecting Simplified disables these parameters, and automatically sets

Detect multiple driving blocks executing at the same time step to
error.

Command-Line Information

Parameter: UnderspecifiedInitializationDetection
Type: string

Value: 'Classic' | 'Simplified'

Default: 'Classic'

Recommended Settings

Application Setting

Debugging Simplified

Traceability Simplified

Efficiency Simplified

Safety precaution Simplified
See Also

e “Conditional Subsystem Output Initialization”

® “Check consistency of initialization parameters for Outport and Merge
blocks”

e Merge block

1-297

1 Configuration Parameters Dialog Box

1-298

Discrete-Time Integrator block
“Conditional Subsystems”
Diagnosing Simulation Errors
Configuration Parameters Dialog Box

Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

Check undefined subsystem initial output

Specify whether to display a warning if the model contains a conditionally
executed subsystem in which a block with a specified initial condition drives
an Outport block with an undefined initial condition

Settings
Default: On
¥ On
Displays a warning if the model contains a conditionally executed

subsystem in which a block with a specified initial condition drives an
Outport block with an undefined initial condition.

I ofr

Does not display a warning.

Tips

¢ This situation occurs when a block with a specified initial condition, such
as a Constant, Initial Condition, or Delay block, drives an Outport block
with an undefined initial condition (Initial output parameter is set to []).

® Models with such subsystems can produce initial results (i.e., before initial
activation of the conditionally executed subsystem) in the current release
that differ from initial results produced in Release 13 or earlier releases.

Consider for example the following model.

1-299

1 Configuration Parameters Dialog Box

|i| ex_check_undefined_subsys_initial_output b

1l *l_.D
Step

Scope

Outl

Triggered Subsystem

[P&| ex_check_undefined_subsys_initial_output b [Pa| Triggered Subsystem

Trigger
: b—(D
Outl
Constant

This model does not define the initial condition of the triggered subsystem’s
output port.

The following figure compares the superimposed output of this model’s Step
block and the triggered subsystem in Release 13 and the current release.

1-300

Diagnostics Pane: Data Validity

Release 13 Current Release

Notice that the initial output of the triggered subsystem differs between
the two releases. This is because Release 13 and earlier releases use the
initial output of the block connected to the output port (i.e., the Constant
block) as the triggered subsystem’s initial output. By contrast, this release
outputs 0 as the initial output of the triggered subsystem because the
model does not specify the port’s initial output.

Dependency
This parameter is enabled only if Underspecified initialization detection
is set to Classic.

Command-Line Information

Parameter: CheckSSInitialOutputMsg
Type: string

Value: 'on' | 'off'

Default: 'on'

1-301

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

® Diagnosing Simulation Errors

® “Conditional Subsystems”

¢ “Underspecified initialization detection” on page 1-296
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-302

Diagnostics Pane: Data Validity

Check preactivation output of execution context

Specify whether to display a warning if Simulink software detects potential
initial output differences from previous releases.

Settings
Default: Off

IFOn

Displays a warning if Simulink software detects potential initial output
differences from previous releases.

I ofr

Does not display a warning.

Tips

¢ This diagnostic is triggered if the model contains a block that meets the
following conditions:

The block produces nonzero output for zero input (e.g., a Cosine block).

The block is connected to an output of a conditionally executed
subsystem.

The block inherits its execution context from that subsystem.

The Outport to which it is connected has an undefined initial condition,
i.e., the Outport block’s Initial output parameter is set to [].

® Models with blocks that meet these criteria can produce initial results
(i.e., before the conditionally executed subsystem is first activated in the
current release that differ from initial results produced in Release 13 or
earlier releases.

Consider for example the following model.

1-303

1 Configuration Parameters Dialog Box

|E| ex_check_preactivation_output k

N

A4

Pulse Generator I

Scope

r

EXl

Outi | Cos

Enabled Suysem Trigonometric Function

[Pa| ex_check_preactivation_sutput P Ba|Enabled Subsystem

Trigger

I\

¥
oy

_'.l|
_S

\V

Sine Wave

1-304

Out1

The following figure compares the superimposed output of the Pulse
Generator and cos block in Release 13 and the current release.

Diagnostics Pane: Data Validity

Release 13 Current Release

Note that the initial output of the cos block differs between the two
releases. This is because in Release 13, the cos block belongs to the
execution context of the root system and hence executes at every time step
whereas in the current release, the cos block belongs to the execution
context of the triggered subsystem and hence executes only when the
triggered subsystem executes.

Dependency
This parameter is enabled only if Underspecified initialization detection
is set to Classic.

Command-Line Information

Parameter: CheckExecutionContextPreStartOutputMsg
Type: string

Value: 'on' | 'off!'

Default: 'on'

1-305

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

® Diagnosing Simulation Errors
¢ “Underspecified initialization detection” on page 1-296
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-306

Diagnostics Pane: Data Validity

Check runtime output of execution context

Specify whether to display a warning if Simulink software detects potential
output differences from previous releases.

Settings
Default: Off

¥ On
Displays a warning if Simulink software detects potential output
differences from previous releases.

I ofr

Does not display a warning.

Tips

¢ This diagnostic is triggered if the model contains a block that meets the
following conditions:

The block has a tunable parameter.

The block is connected to an output of a conditionally executed
subsystem.

The block inherits its execution context from that subsystem.

The Outport to which it is connected has an undefined initial condition,
i.e., the Outport block’s Initial output parameter is set to [].

® Models with blocks that meet these criteria can produce results when the
parameter is tuned in the current release that differ from results produced
in Release 13 or earlier releases.

Consider for example the following model.

1-307

1 Configuration Parameters Dialog Box

M

Pulse Generstor

T
]

Scope
r

i1

Outi p——p

Enabled Subsystem

@—b tunewvar

S-Function

In this model, the tunevar S-function changes the value of the Gain
block’s k parameter and updates the diagram at simulation time 7 (i.e., it
simulates tuning the parameter).

The following figure compares the superimposed output of the model’s Pulse
Generator block and its Gain block in Release 13 and the current release.

1-308

Diagnostics Pane: Data Validity

Release 13 Current Release

Note that the output of the Gain block changes at time 7 in Release 13
but does not change in the current release. This is because in Release 13,
the Gain block belongs to the execution context of the root system and
hence executes at every time step whereas in the current release, the Gain
block belongs to the execution context of the triggered subsystem and hence
executes only when the triggered subsystem executes, i.e., at times 5, 10,
15, and 20.

Dependency
This parameter is enabled only if Underspecified initialization detection
is set to Classic.

Command-Line Information

Parameter: CheckExecutionContextRuntimeOutputMsg
Type: string

Value: 'on' | 'off'

Default: 'on'

1-309

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

® Diagnosing Simulation Errors
¢ “Underspecified initialization detection” on page 1-296
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-310

Diagnostics Pane: Data Validity

Array bounds exceeded

Select the diagnostic action to take when blocks write data to locations outside
the memory allocated to them.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

e Use this option to check whether execution of each instance of a block
during model simulation writes data to memory locations not allocated
to the block. This can happen only if your model includes a user-written
S-function that has a bug.

¢ Enabling this option slows down model execution considerably. Thus, you
should enable it only if you suspect that your model contains a user-written
S-function that has a bug.

¢ This option causes Simulink software to check whether a block writes
outside the memory allocated to it during simulation. Typically this can
happen only if your model includes a user-written S-function that has a bug.

¢ See Checking Array Bounds in “Error Handling” for more information
on using this option.

1-311

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: ArrayBoundsChecking
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency none

Safety precaution No impact
See Also

® Diagnosing Simulation Errors
® Writing S-Functions
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-312

Diagnostics Pane: Data Validity

Model Verification block enabling

Enable model verification blocks in the current model either globally or locally.

Settings
Default: Use local settings

Use local settings
Enables or disables blocks based on the value of the Enable assertion
parameter of each block. If a block’s Enable assertion parameter is on,
the block is enabled; otherwise, the block is disabled.

Enable All
Enables all model verification blocks in the model regardless of the
settings of their Enable assertion parameters.

Disable All
Disables all model verification blocks in the model regardless of the
settings of their Enable assertion parameters.

Dependency

Simulation and code generation ignore the Model Verification block
enabling parameter when model verification blocks are inside a S-function.

Command-Line Information

Parameter: AssertControl

Type: string

Value: 'UselLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UselLocalSettings'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-313

1 Configuration Parameters Dialog Box

Application Setting

Efficiency No impact

Safety precaution Disable all
See Also

® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Data Validity

1-314

Diagnostics Pane: Type Conversion

Diagnostics Pane: Type Conversion

— Type Conversion

Unnecessary type conversions: Iru:une

Viectar fmatrix block input conversion: Iru:nne

32-bit integer to single precision float conversion: I';-.'arning

Ll Led L

Fixed-point Constants
Detect underflow: Inu:une ;I Detect overflow: [none ;I
Detect predision loss: Inu:une ;I

In this section...

“Type Conversion Diagnostics Overview” on page 1-316
“Unnecessary type conversions” on page 1-317

“Vector/matrix block input conversion” on page 1-318

“32-bit integer to single precision float conversion” on page 1-320
“Detect underflow” on page 1-322

“Detect precision loss” on page 1-324

“Detect overflow” on page 1-326

1-315

1 Configuration Parameters Dialog Box

1-316

Type Conversion Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it
detects a data type conversion problem while compiling the model.

Configuration
Set the parameters displayed.

Tips

¢ To open the Type Conversion pane, in the Simulink
Editor, select Simulation > Model Configuration
Parameters > Diagnostics > Type Conversion.

® The options are typically to do nothing or to display a warning or an error
message.

® A warning does not terminate a simulation, but an error does.

See Also

® Diagnosing Simulation Errors

e Solver Diagnostics

e Sample Time Diagnostics

® Data Validity Diagnostics

® Connectivity Diagnostics

e Compatibility Diagnostics

e Model Referencing Diagnostics

e Saving Diagnostics

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Type Conversion

Diagnostics Pane: Type Conversion

Unnecessary type conversions

Select the diagnostic action to take when Simulink software detects a Data
Type Conversion block used where no type conversion is necessary.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

Command-Line Information

Parameter: UnnecessaryDatatypeConvMsg
Type: string

Value: 'none' | 'warning'

Default: 'none'’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution warning
See Also

® Diagnosing Simulation Errors
¢ Data Type Conversion block
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Type Conversion

1-317

1 Configuration Parameters Dialog Box

1-318

Vector/matrix block input conversion

Select the diagnostic action to take when Simulink software detects a
vector-to-matrix or matrix-to-vector conversion at a block input.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips
Simulink software converts vectors to row or column matrices and row or
column matrices to vectors under the following circumstances:

¢ [f a vector signal is connected to an input that requires a matrix, Simulink
software converts the vector to a one-row or one-column matrix.

e If a one-column or one-row matrix is connected to an input that requires a
vector, Simulink software converts the matrix to a vector.

e If the inputs to a block consist of a mixture of vectors and matrices and the
matrix inputs all have one column or one row, Simulink software converts
the vectors to matrices having one column or one row, respectively.

Command-Line Information

Parameter: VectorMatrixConversionMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Diagnostics Pane: Type Conversion

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

error

See Also

® Diagnosing Simulation Errors

® Determining Output Signal Dimensions

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Type Conversion

1-319

1 Configuration Parameters Dialog Box

32-bit integer to single precision float conversion

Select the diagnostic action to take if Simulink software detects a 32-bit
integer value was converted to a floating-point value.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

Tip
Converting a 32-bit integer value to a floating-point value can result in a loss
of precision. See Working with Data Types for more information.

Command-Line Information

Parameter: Int32ToFloatConvMsg
Type: string

Value: 'none' | 'warning’
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution warning
See Also

¢ Diagnosing Simulation Errors

1-320

Diagnostics Pane: Type Conversion

® Working with Data Types
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Type Conversion

1-321

1 Configuration Parameters Dialog Box

1-322

Detect underflow

Specifies diagnostic action to take when a fixed-point constant underflow
occurs during simulation.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

® This diagnostic applies only to fixed-point constants (net slope and net bias).

¢ Fixed-point constant underflow occurs when Simulink software encounters
a fixed-point constant whose data type does not have enough precision to
represent the ideal value of the constant because the ideal value is too
small.

® When fixed-point constant underflow occurs, casting the ideal value to the
data type causes the value of the fixed-point constant to become zero, and
therefore to differ from its ideal value.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter:FixptConstUnderflowMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Diagnostics Pane: Type Conversion

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

® Net Slope and Net Bias Precision Issues

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Type Conversion

1-323

1 Configuration Parameters Dialog Box

1-324

Detect precision loss

Specifies diagnostic action to take when a fixed-point constant precision loss
occurs during simulation.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips
¢ This diagnostic applies only to fixed-point constants (net slope and net bias).

® Precision loss occurs when Simulink software converts a fixed-point
constant to a data type which does not have enough precision to represent
the exact value of the constant. As a result, the quantized value differs
from the ideal value.

¢ Fixed-point constant precision loss differs from fixed-point constant
overflow. Overflow occurs when the range of the parameter’s data type,
that is, the maximum value that it can represent, is smaller than the ideal
value of the parameter.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter:FixptConstPrecisionLossMsg
Type: string
Value: 'none' | 'warning' | 'error'

Diagnostics Pane: Type Conversion

Default: 'none’

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

® Net Slope and Net Bias Precision Issues

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Type Conversion

1-325

1 Configuration Parameters Dialog Box

1-326

Detect overflow

Specifies diagnostic action to take when a fixed-point constant overflow occurs
during simulation.

Settings
Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error
message.

Tips

This diagnostic applies only to fixed-point constants (net slope and net bias).

Overflow occurs when the Simulink software converts a fixed-point
constant to a data type whose range is not large enough to accommodate
the i1deal value of the constant. The ideal value is either too large or too
small to be represented by the data type. For example, suppose that the
1deal value is 200 and the converted data type is int8. Overflow occurs in
this case because the maximum value that int8 can represent is 127.

Fixed-point constant overflow differs from fixed-point constant precision
loss. Precision loss occurs when the ideal fixed-point constant value is
within the range of the data type and scaling being used, but cannot be
represented exactly.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter:FixptConstOverflowMsg

Diagnostics Pane: Type Conversion

Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

e Net Slope and Net Bias Precision Issues
¢ Configuration Parameters Dialog Box

¢ Diagnostics Pane: Type Conversion

1-327

Configuration Parameters

Dialog Box

Diagnostics Pane: Connectivity

'\@j Configuration Parameters: untitled/Configuration (Active)

Select:

- Solver

- Data Import/Export
-Optimization
-I-Diagnostics

- Sample Time

- Data Validity

-~ Type Conversion
 Connectivity

- Compatibility

-~ Model Referencing
- Saving

- Stateflow
--Hardware Implementation
- Model Referencing
+-Simulation Target
-Code Generation
-HDL Code Generation

S

¥

Connectivity

Signals

Signal label mismatch: ’none

Unconnected block input ports: [warning

Unconnected block output ports: ’warning

Unconnected line: [warning

Buses

Unspecified bus object at root Outport block: [warning

Element name mismatch: [warning ']
Mux blocks used to create bus signals: [error v]
Bus signal treated as vector: [none ']
Non-bus signals treated as bus signals: [none ']
Repair bus selections: [Warn and repair v]
Function calls

Invalid function-call connection: [error

Context-dependent inputs: [Enable all as errors

m

[0K H Cancel H Help

In this section...

1-328

“Connectivity Diagnostics Overview” on page 1-330
“Signal label mismatch” on page 1-331
“Unconnected block input ports” on page 1-333
“Unconnected block output ports” on page 1-335

“Unconnected line” on page 1-337

Apply

»

m

Diagnostics Pane: Connectivity

In this section...

“Unspecified bus object at root Outport block” on page 1-339
“Element name mismatch” on page 1-341

“Mux blocks used to create bus signals” on page 1-343

“Bus signal treated as vector” on page 1-346

“Non-bus signals treated as bus signals” on page 1-349
“Repair bus selections” on page 1-351

“Invalid function-call connection” on page 1-353

“Context-dependent inputs” on page 1-355

1-329

1 Configuration Parameters Dialog Box

1-330

Connectivity Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it
detects a problem with block connections while compiling the model.

Configuration
Set the parameters displayed.

Tips

® To open the Connectivity pane, in the Simulink
Editor, select Simulation > Model Configuration
Parameters > Diagnostics > Connectivity.

® The options are typically to do nothing or to display a warning or an error
message.

® A warning does not terminate a simulation, but an error does.

See Also

® Diagnosing Simulation Errors

e Solver Diagnostics

e Sample Time Diagnostics

® Data Validity Diagnostics

¢ Type Conversion Diagnostics

e Compatibility Diagnostics

e Model Referencing Diagnostics

e Saving Diagnostics

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Connectivity

Diagnostics Pane: Connectivity

Signal label mismatch

Select the diagnostic action to take when different names are used for the
same signal as that signal propagates through blocks in a model. This
diagnostic does not check for signal label mismatches on a virtual bus signal.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Command-Line Information

Parameter: SignallabelMismatchMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® “Signal Labels”

1-331

1 Configuration Parameters Dialog Box

® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

¢ Diagnostics Pane: Connectivity

1-332

Diagnostics Pane: Connectivity

Unconnected block input ports

Select the diagnostic action to take when the model contains a block with
an unconnected input.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Command-Line Information

Parameter: UnconnectedInputMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors

1-333

1 Configuration Parameters Dialog Box

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Connectivity

1-334

Diagnostics Pane: Connectivity

Unconnected block output ports

Select the diagnostic action to take when the model contains a block with an
unconnected output.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Command-Line Information

Parameter: UnconnectedOutputMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors

1-335

1 Configuration Parameters Dialog Box

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Connectivity

1-336

Diagnostics Pane: Connectivity

Unconnected line

Select the diagnostic action to take when the Model contains an unconnected
line or an unmatched Goto or From block.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Command-Line Information

Parameter: UnconnectedLineMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors

1-337

1 Configuration Parameters Dialog Box

Goto block
From block

¢ Configuration Parameters Dialog Box

Diagnostics Pane: Connectivity

1-338

Diagnostics Pane: Connectivity

Unspecified bus object at root Outport block

Select the diagnostic action to take while generating a simulation target for a
referenced model if any of the model’s root Outport blocks is connected to a
bus but does not specify a bus object (see Simulink.Bus).

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Command-Line Information

Parameter: RootOutportRequireBusObject
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors

1-339

1 Configuration Parameters Dialog Box

Outport block

Simulink.Bus

¢ Configuration Parameters Dialog Box

Diagnostics Pane: Connectivity

1-340

Diagnostics Pane: Connectivity

Element name mismaich

Select the diagnostic action to take if the name of a bus element does not
match the name specified by the corresponding bus object.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tip
You can use this diagnostic along with bus objects to ensure that your model

meets bus element naming requirements imposed by some blocks, such as
the Switch block.

Command-Line Information

Parameter: BusObjectLabelMismatch
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1-341

1 Configuration Parameters Dialog Box

See Also

® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

¢ Diagnostics Pane: Connectivity

1-342

Diagnostics Pane: Connectivity

Mux blocks used to create bus signals

Select the diagnostic action to take if Simulink detects a Mux block that
creates a virtual bus.

Settings
Default: error

none
Simulink software takes no action.

This option disables checking for Mux blocks used to create virtual bus
signals.

warning
Simulink software displays a warning.

With this option, if Simulink detects a Mux block that creates a virtual
bus during model update or simulation, it displays a message in the
MATLAB Command Window that identifies the offending block. It
does this for the first ten Mux block signals that it encounters that are
treated as virtual buses.

error
Simulink terminates the simulation and displays an error message
identifying the first Mux block it encounters that is used to create a
virtual bus. If this option is selected, a Mux block with more than one
input is allowed to output only a vector signal, and a Mux block with
only one input is allowed to output only a scalar, vector, or matrix signal.

Tips

¢ This diagnostic detects use of Mux blocks to create virtual buses. The
diagnostic considers a signal created by a Mux block to be a virtual bus if
the signal meets either or both of the following conditions:

= A Bus Selector block individually selects one or more of the signal
elements (as opposed to the entire signal).

1-343

1 Configuration Parameters Dialog Box

= The signal components have differing data types, numeric types (complex
or real), dimensionality, or sampling modes (see the DSP System
Toolbox™ documentation for information on frame-based sampling).

¢ If you are using simplified initialization mode, you must set this diagnostic
to error. For more information, see Underspecified initialization detection.

® You can identify Mux blocks used to create virtual buses using the Model
Advisor Check bus usage check. For more information, see “Check bus

usage”.

® See “Prevent Bus and Mux Mixtures” for more information.

Dependency

Selecting error enables the following parameter:

¢ Bus signal treated as vector

Command-Line Information

Parameter: StrictBusMsg

Type: string

Value: 'none' | 'warning' | 'ErrorLevell' |
'WarnOnBusTreatedAsVector' | 'ErrorOnBusTreatedAsVector'
Default: 'ErrorLeveld’

Due to the requirement that Mux blocks used to create bus signals be
error before Bus signal treated as vector is enabled, one parameter,
StrictBusMsg, can specify all permutations of the two controls. The
parameter can have one of five values. The following table shows these values
and the equivalent GUI control settings:

Value of StrictBuslsg
(API)

Mux blocks used to create
bus signals (GUI)

Bus signal treated as vector
(GUI)

None none none
Warning warning none
ErrorLevelt error none
WarnOnBusTreatedAsVector error warning
ErrorOnBusTreatedAsVector | error error

Diagnostics Pane: Connectivity

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

error

See Also

e “Prevent Bus and Mux Mixtures”

® Diagnosing Simulation Errors

¢ Mux block
® Bus Creator block
® Bus Selector block

¢ Underspecified initialization detection

® “Check bus usage”

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Connectivity

1-345

1 Configuration Parameters Dialog Box

1-346

Bus signal treated as vector

Select the diagnostic action to take when Simulink software detects a virtual
bus signal that is used as a mux signal.

Settings
Default: warning

none
Disables checking for virtual buses used as muxes.

warning
Simulink software displays a warning if it detects a virtual bus used as
a mux. This option does not enforce strict bus behavior.

error
Simulink software terminates the simulation and displays an error
message when it builds a model that uses any virtual bus as a mux.

Tips

¢ This diagnostic detects the use of virtual bus signals used to specify muxes.
The diagnostic considers a virtual bus signal to be used as a mux if it is
input to a Demux block or to any block that can input a mux or a vector but
is not formally defined as bus-capable. See Bus-Capable Blocks for details.

¢ Virtual buses can be used as muxes only when they contain no nested
buses and all constituent signals have the same attributes. This practice
is deprecated as of R2007a (V6.6) and may cease to be supported at some
future time. MathWorks, therefore, discourages mixing virtual buses with
muxes in new applications, and encourages upgrading existing applications
to avoid such mixtures.

¢ [f you are using simplified initialization mode, you must set this diagnostic
to error. For more information, see Underspecified initialization detection.

® You can identify bus signals that are treated as a vectors using the Model
Advisor Check bus usage check. For more information, see “Check bus
usage”.

e See “Prevent Bus and Mux Mixtures” for more information.

Diagnostics Pane: Connectivity

Dependency

This parameter is enabled only when Mux blocks used to create bus
signals is set to error.

Command-Line Information

Parameter: StrictBusMsg

Type: string

Value: 'none' | 'warning' | 'ErrorLevell' |
'"WarnOnBusTreatedAsVector' | 'ErrorOnBusTreatedAsVector'
Default: 'warning'

Due to the requirement that Mux blocks used to create bus signals be
error before Bus signal treated as vector is enabled, one parameter,
StrictBusMsg, can specify all permutations of the two controls. The
parameter can have one of five values. The following table shows these values
and the equivalent GUI control settings:

Value of StrictBusMsg Mux blocks used to create | Bus signal treated as vector
(API) bus signals (GUI) (GUI)

None none none

Warning warning none

ErrorLevelt error none
WarnOnBusTreatedAsVector error warning
ErrorOnBusTreatedAsVector | error error

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1-347

1 Configuration Parameters Dialog Box

1-348

See Also

¢ Avoiding Mux/Bus Mixtures

® Diagnosing Simulation Errors

¢ Bus-Capable Blocks

¢ Demux block

® Bus to Vector block

® Underspecified initialization detection

® “Check bus usage”

® Simulink.BlockDiagram.addBusToVector
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Connectivity

Diagnostics Pane: Connectivity

Non-bus signals treated as bus signals

Detect when Simulink implicitly converts a non-bus signal to a bus signal to
support connecting the signal to a Bus Assignment or Bus Selector block.

Settings
Default: none

none
Implicitly converts non-bus signals to bus signals to support connecting
the signal to a Bus Assignment or Bus Selector block.

warning
Simulink displays a warning, indicating that it has converted a non-bus
signal to a bus signal. The warning lists the non-bus signals that
Simulink converts.

error
Simulink terminates the simulation without performing converting
non-bus signals to bus signals. The error message lists the non-bus
signal that is being treated as a bus signal.

Tips

¢ Using a Mux block to create a virtual bus does not support strong
type checking and increases the likelihood of runtime errors. In new
applications, do not use Mux blocks to create bus signals. Consider
upgrading existing applications to that use of Mux blocks.

= Simulink generates a warning when you load a model created in a
release prior to R2010a, if that model contains a Mux block to create a
bus signal. For new models, Simulink generates an error.

® See Avoiding Mux/Bus Mixtures for more information.

Dependency

This parameter is enabled only when Mux blocks used to create bus
signals is set to error.

1-349

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: NonBusSignalsTreatedAsBus
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Avoiding Mux/Bus Mixtures

® Diagnosing Simulation Errors

® Bus-Capable Blocks

® Demux block

® Bus to Vector block

® Simulink.BlockDiagram.addBusToVector
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Connectivity

1-350

Diagnostics Pane: Connectivity

Repair bus selections

Repair broken selections in the Bus Selector and Bus Assignment block
parameter dialogs due to upstream bus hierarchy changes.

Settings
Default: Warn and repair

Warn and repair
Simulink displays a warning, indicating the block parameters for Bus
Selector and Bus Assignment blocks that Simulink repaired to reflect
upstream bus hierarchy changes.

Error without repair
Simulink terminates the simulation and displays an error message
indicating the block parameters that you need to repair for Bus Selector
and Bus Assignment blocks to reflect upstream bus hierarchy changes.

Tips
® See Avoiding Mux/Bus Mixtures for more information.
Dependency

This parameter is enabled only when Mux blocks used to create bus
signals is set to error.

Command-Line Information

Parameter: BusNameAdapt

Type: string

Values: 'WarnAndRepair' | 'ErrorWithoutRepair'
Default: 'WarnAndRepair'

1-351

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Warn and repair
See Also

® Avoiding Mux/Bus Mixtures

® “Nest Buses”

® Diagnosing Simulation Errors

® Bus-Capable Blocks

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Connectivity

1-352

Diagnostics Pane: Connectivity

Invalid function-call connection

Select the diagnostic action to take if Simulink software detects incorrect use
of a function-call subsystem.

Settings
Default: error

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips
® See the "Function-call subsystems" examples in the Simulink Subsystem
Semantics library for examples of invalid uses of function-call subsystems.

® Setting this parameter to none or warning can lead to invalid simulation
results.

® Setting this parameter to none or warning may cause Simulink software to
insert extra delay operations.

Command-Line Information

Parameter: InvalidFcnCallConnMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'error'

1-353

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors
® Subsystem Semantics library
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Connectivity

1-354

Diagnostics Pane: Connectivity

Context-dependent inputs

Select the diagnostic action to take when Simulink software has to compute
any of a function-call subsystem’s inputs directly or indirectly during
execution of a call to a function-call subsystem.

Settings
Default: Enable all as errors

Enable all as errors
Enables this diagnostic for all function-call subsystems in this model.
Issues an error for context-dependent inputs.

Enable all as warnings
Enables this diagnostic for all function-call subsystems in this model.
Issues a warning for context-dependent inputs.

Use local settings
Issues a warning only if the corresponding diagnostic is selected on the
function-call subsystem’s parameters dialog box (see the documentation
for the Subsystem block’s parameter dialog box for more information).

Disable all
Disables this diagnostic for all function-call subsystems in this model.

Tips
¢ This situation occurs when executing a function-call subsystem can change
its inputs.

¢ For examples of function-call subsystems, see the "Function-call systems"
examples in the Simulink "Subsystem Semantics" library).

¢ To fix an error or warning generated by this diagnostic, use one of these
approaches:

= For the Inport block inside of the function-call subsystem, enable the
Latch input for feedback signals of function-call subsystem
outputs parameter.

= Place a Function-Call Feedback Latch block on the feedback signal.

1-355

1 Configuration Parameters Dialog Box

For examples of using these approaches, open the sl_subsys_fcncallerr12
model and press the more info button.

Command-Line Information

Parameter: FcnCallInpInsideContextMsg

Type: string

Value: 'EnableAllAsError'| 'EnableAllAsWarning'|
'UseLocalSettings' | 'DisableAll’

Default: 'EnableAllAsError'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

“Create a Function-Call Subsystem”

® “Pass fixed-size scalar root inputs by value for code generation” on page
1-519

® Subsystem Semantics library

® Subsystem block

® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Connectivity

1-356

Diagnostics Pane: Compatibility

Diagnostics Pane: Compatibility

Compatibility

S-function upgrades needed: |none

Block behavior depends on frame status of signal: |warning

In this section...

“Compatibility Diagnostics Overview” on page 1-358

“S-function upgrades needed” on page 1-359

“Block behavior depends on frame status of signal” on page 1-361

1-357

1 Configuration Parameters Dialog Box

1-358

Compatibility Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it
detects an incompatibility between the current version of Simulink software
and the model.

Configuration
Set the parameters displayed.

Tips

® To open the Compatibility pane, in the Simulink
Editor, select Simulation > Model Configuration
Parameters > Diagnostics > Compatibility.

® The options are typically to do nothing or to display a warning or an error
message.

® A warning does not terminate a simulation, but an error does.

See Also

¢ Diagnosing Simulation Errors

e Solver Diagnostics

e Sample Time Diagnostics

® Data Validity Diagnostics

¢ Type Conversion Diagnostics

® Connectivity Diagnostics

e Compatibility Diagnostics

e Model Referencing Diagnostics

e Saving Diagnostics

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Compatibility

Diagnostics Pane: Compatibility

S-function upgrades needed

Select the diagnostic action to take if Simulink software encounters a block
that has not been upgraded to use features of the current release.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Command-Line Information

Parameter: SfunCompatibilityCheckMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'none'’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

® Diagnosing Simulation Errors

1-359

1 Configuration Parameters Dialog Box

¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Compatibility

1-360

Diagnostics Pane: Compatibility

Block behavior depends on frame status of signal

Select the diagnostic action to take when Simulink software encounters a
block whose behavior depends on the frame status of a signal.

In future releases, frame status will no longer be a signal attribute. To
prepare for this change, many blocks received a new parameter. This
parameter allows you to specify whether the block treats its input as frames
of data or as samples of data. Setting this parameter prepares your model
for future releases by moving control of sample- and frame-based processing
from the frame status of the signal to the block.

This diagnostic helps you identify whether any of the blocks in your model
relies on the frame status of a signal. By knowing this status, you can
determine whether the block performs sample- or frame-based processing.
For more information, see the R2012a DSP System Toolbox Release Notes
section about frame-based processing.

Note Frame-based processing requires a DSP System Toolbox license.

Settings
Default: warning

none
Simulink software takes no action.

warning
If your model contains any blocks whose behavior depends on the frame
status of a signal, Simulink software displays a warning.

error
If your model contains any blocks whose behavior depends on the frame
status of a signal, Simulink software terminates the simulation and
displays an error message.

1-361

1 Configuration Parameters Dialog Box

1-362

Tips
e Use the slupdate command to automatically update the blocks in your
model.

Command-Line Information

Parameter: FrameProcessingCompatibilityMsg
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

* “Sample- and Frame-Based Concepts”
® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Compatibility

Diagnostics Pane: Model Referencing

Diagnostics Pane: Model Referencing

— Model Referencing

Model block. wersion mizmatch: Inu:une
Puart and parameter mizmatch: Inu:une
todel configuration mizmatch: Inu:une

[Feealid oot [nportdOutpart Block connection: Inu:une

Ll Led Lo L] Lo

IIhzupported data logging: Iwarning

In this section...

“Model Referencing Diagnostics Overview” on page 1-364
“Model block version mismatch” on page 1-365
“Port and parameter mismatch” on page 1-367
“Model configuration mismatch” on page 1-369

“Invalid root Inport/Outport block connection” on page 1-371

“Unsupported data logging” on page 1-376

1-363

1 Configuration Parameters Dialog Box

1-364

Model Referencing Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it
detects an incompatibility relating to a model reference hierarchy.

Configuration
Set the parameters displayed.

Tips

® To open the Diagnostics: Model Referencing pane, in the
Simulink Editor, select Simulation > Model Configuration
Parameters > Diagnostics > Model Referencing.

® The options are typically to do nothing or to display a warning or an error
message.

® A warning does not terminate a simulation, but an error does.

See Also
¢ Referencing Models

¢ Diagnosing Simulation Errors

e Solver Diagnostics

e Sample Time Diagnostics

® Data Validity Diagnostics

¢ Type Conversion Diagnostics

¢ Connectivity Diagnostics

¢ Compatibility Diagnostics

® Saving Diagnostics

¢ Configuration Parameters Dialog Box

¢ Diagnostics Pane: Model Referencing

Diagnostics Pane: Model Referencing

Model block version mismatch

Select the diagnostic action to take when loading or updating this model if
Simulink software detects a mismatch between the version of the model used
to create or refresh a Model block in this model and the referenced model’s
current version.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning and refreshes the Model block.

error
Simulink software displays an error message and does not refresh
Model block.

Tip

If you have enabled display of referenced model version numbers on Model

blocks for this model (see Displaying Referenced Model Version Numbers),

Simulink software displays a version mismatch on the Model block icon, for
example: Rev:1.0 != 1.2,

Command-Line Information

Parameter: ModelReferenceVersionMismatchMessage
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'none'’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-365

1 Configuration Parameters Dialog Box

1-366

Application Setting
Efficiency No impact
Safety precaution none

See Also

e Referencing Models
® Diagnosing Simulation Errors
¢ Displaying Referenced Model Version Numbers

¢ Configuration Parameters Dialog Box

Diagnostics Pane: Model Referencing

Diagnostics Pane: Model Referencing

Port and parameter mismatch

Select the diagnostic action to take if Simulink software detects a port or
parameter mismatch during model loading or updating.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning and refreshes the Model block.

error
Simulink software displays an error message and does not refresh the
Model block.

Tips

¢ Port mismatches occur when there is a mismatch between the I/O ports of a
Model block and the root-level I/O ports of the model it references.

® Parameter mismatches occur when there is a mismatch between the
parameter arguments recognized by the Model block and the parameter
arguments declared by the referenced model.

® Model block icons can display a message indicating port or parameter
mismatches. To enable this feature, from the parent model’s Simulink
Editor, select Display > Blocks > Block I/0 Mismatch for Referenced
Models.

Command-Line Information

Parameter: ModelReferenceIOMismatchMessage
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'none'’

1-367

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

e Referencing Models
® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

¢ Diagnostics Pane: Model Referencing

1-368

Diagnostics Pane: Model Referencing

Model configuration mismatch

Select the diagnostic action to take if the configuration parameters of a model
referenced by this model do not match this model’s configuration parameters
or are inappropriate for a referenced model.

Settings
Default: none

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tip

Set this diagnostic to warning or error if you suspect that an inappropriate
or mismatched configuration parameter may be causing your model to give
the wrong result.

Command-Line Information

Parameter: ModelReferenceCSMismatchMessage
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'none'’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-369

1 Configuration Parameters Dialog Box

1-370

Application Setting

Efficiency No impact

Safety precaution warning
See Also

e Referencing Models
¢ Configuration Parameter Requirements
® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

Diagnostics Pane: Model Referencing

Diagnostics Pane: Model Referencing

Invalid root Inport/Outport block connection

Select the diagnostic action to take if Simulink software detects invalid
internal connections to this model’s root-level Output port blocks.

Settings
Default: none

none
Simulink software silently inserts hidden blocks to satisfy the
constraints wherever possible.

warning
Simulink software warns you that a connection constraint has been

violated and attempts to satisfy the constraint by inserting hidden
blocks.

error
Simulink software terminates the simulation or code generation and
displays an error message.

Tips

¢ In some cases (such as function-call feedback loops), automatically inserted
hidden blocks may introduce delays and thus may change simulation
results.

® Auto-inserting hidden blocks to eliminate root I/O problems stops at
subsystem boundaries. Therefore, you may need to manually modify
models with subsystems that violate any of the constraints below.

¢ The types of invalid internal connections are:

= A root Output port is connected directly or indirectly to more than one
nonvirtual block port:

1-371

1 Configuration Parameters Dialog Box

CO— >
I e
=ain
1
Out1

@

Gaini

= A root Output port is connected to a Ground block:

Ground Out1

= Two root Outport blocks are connected to the same block port:

O— 1D

B
Ot

= An Outport block is connected to some elements of a block output and
not others:

Out1
O r— »—»
in Gain

OutZ

1-372

Diagnostics Pane: Model Referencing

= An Outport block is connected more than once to the same element:

N I

Zain | o

= The signal driving the root outport is a test point:

® The output port has a constant sample time, but the driving block has a
non-constant sample time:

1
Constant2

+

ol —»(2)
Out2

Subsystem

® The driving block has a constant sample time and multiple output ports,
and one of the other output ports of the block is a test point.

1-373

1 Configuration Parameters Dialog Box

1-374

Gain
|l :
7.
1 g RS »(2)
Constant Complex to Ot
Magnitude-Angle

¢ The root output port is conditionally computed, you are using Function
Prototype Control or a Encapsulated C++ target, and the Function
Prototype specification or C++ target specification states that the output
variable corresponding to that root outport is returned by value.

% ¥ LM
Trigger
Chart
F
n
Ot —p-
Ot

Enabled Subsystemn

Command-Line Information

Parameter: ModelReferenceIOMsg
Type: string

Value: 'none' | 'warning' | 'error
Default: 'none'’

Diagnostics Pane: Model Referencing

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution error
See Also

e Referencing Models
® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

¢ Diagnostics Pane: Model Referencing

1-375

1 Configuration Parameters Dialog Box

1-376

Unsupported data logging

Select the diagnostic action to take if this model contains To Workspace blocks
or Scope blocks with data logging enabled.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning.

error
Simulink software terminates the simulation and displays an error
message.

Tips

¢ The default action warns you that Simulink software does not support use
of these blocks to log data from referenced models.

4

® See “Models with Model Referencing: Overriding Signal Logging Settings’
for information on how to log signals from a reference to this model.

Command-Line Information

Parameter: ModelReferenceDataloggingMessage
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Diagnostics Pane: Model Referencing

Application Setting

Efficiency No impact

Safety precaution error
See Also

e Referencing Models

® Diagnosing Simulation Errors

¢ “Models with Model Referencing: Overriding Signal Logging Settings”
* To Workspace block

® Scope block

¢ Configuration Parameters Dialog Box

¢ Diagnostics Pane: Model Referencing

1-377

1 Configuration Parameters Dialog Box

Diagnostics Pane: Saving

S aving

Block diagram containg dizabled libramy linkz: |warning

KN|EN

Block diagram contains parametenzed librany links: Iwarning

In this section...

“Saving Tab Overview” on page 1-379
“Block diagram contains disabled library links” on page 1-380

“Block diagram contains parameterized library links” on page 1-382

1-378

Diagnostics Pane

: Saving

Saving Tab Overview

Specify the diagnostic actions that Simulink software takes when saving a
block diagram containing disabled library links or parameterized library links.

Configuration
Set the parameters displayed.

Tips

To open the Saving pane, in the Simulink Editor,
select Simulation > Model Configuration
Parameters > Diagnostics > Saving.

The options are typically to do nothing or to display a warning or an error

message.

® A warning does not terminate a simulation, but an error does.

See Also

Saving a Model

Model Parameters

Diagnosing Simulation Errors
Solver Diagnostics

Sample Time Diagnostics
Data Validity Diagnostics
Type Conversion Diagnostics
Connectivity Diagnostics
Compatibility Diagnostics
Model Referencing Diagnostics
Configuration Parameters Dialog Box

Diagnostics Pane: Saving

1-379

1 Configuration Parameters Dialog Box

1-380

Block diagram contains disabled library links

Select the diagnostic action to take when saving a model containing disabled
library links.

Settings
Default: warning

none
Simulink software takes no action.

warning
Simulink software displays a warning and saves the block diagram. The
diagram may not contain the information you had intended.

error
Simulink software displays an error message. The model is not saved.

Tip
Use the Model Advisor Identify disabled library links check to find
disabled library links.

Command-Line Information

Parameter: SaveWithDisabledLinksMsg
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Diagnostics Pane: Saving

See Also

® Disabling Library Links
Identify disabled library links

Saving a Model

Model Parameters

Configuration Parameters Dialog Box

Diagnostics Pane: Saving

1-381

1 Configuration Parameters Dialog Box

Block diagram contains parameterized library links

Select the diagnostic action to take when saving a model containing
parameterized library links.

Settings
Default: warning
none
Simulink software takes no action.

warning
Simulink software displays a warning and saves the block diagram. The
diagram may not contain the in formation you had intended.

error
Simulink software displays an error message. The model is not saved.

Tips

¢ Use the Model Advisor Identify parameterized library links check
to find parameterized library links.

Command-Line Information

Parameter: SaveWithParameterizedLinksMsg
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'none'’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

1-382

Diagnostics Pane: Saving

See Also

¢ Identify parameterized library links
¢ Configuration Parameters Dialog Box

® Diagnostics Pane: Saving

1-383

1 Configuration Parameters Dialog Box

Diagnostics Pane: Stateflow

1-384

Stateflow

Unused data and events: ’warning v]
Unexpected backtracking: ’warning v]
Invalid input data access in chart initialization: ’warning ']
Mo unconditional default transitions: ’warning *]
Transition outside natural parent: ’warning V]
Transition shadowing: Iwarning v]
Undirected event broadcasts: ’warning v]

Transition action specified before condition action: ’warning

In this section...

“Stateflow Diagnostics Overview” on page 1-385

“Unused data and events” on page 1-386

“Unexpected backtracking” on page 1-388

“Invalid input data access in chart initialization” on page 1-390
“No unconditional default transitions” on page 1-392
“Transition outside natural parent” on page 1-394

“Transition shadowing” on page 1-396

“Undirected event broadcasts” on page 1-398

“Transition action specified before condition action” on page 1-400

Diagnostics Pane: Stateflow®

Stateflow Diagnostics Overview

Specify the diagnostic actions to take for detection of undesirable chart
designs.

Configuration
Set the parameters displayed.

Tips

® To open the Stateflow pane, in the Simulink
Editor, select Simulation > Model Configuration
Parameters > Diagnostics > Stateflow.

* The options are typically to do nothing or to display a warning or an error
message.

® A warning does not terminate a simulation, but an error does.

See Also
® Saving a Model

® Model Parameters

¢ Diagnosing Simulation Errors
e Solver Diagnostics

e Sample Time Diagnostics

® Data Validity Diagnostics

¢ Type Conversion Diagnostics

¢ Connectivity Diagnostics

¢ Compatibility Diagnostics

® Model Referencing Diagnostics
® Saving Diagnostics

¢ Configuration Parameters Dialog Box

1-385

1 Configuration Parameters Dialog Box

Unused data and events

Select the diagnostic action to take for detection of unused data and eventsin a
chart. Removing unused data and events can minimize the size of your model.

Settings
Default: warning
none
No warning or error appears.

warning
A warning appears, with a link to delete the unused data or event in
your chart.

error
An error appears and stops the simulation.

Tip

This diagnostic does not detect the following types of data and events:
® Machine-parented data

¢ Inputs and outputs of MATLAB functions

¢ Input events

Command-Line Information

Parameter: SFUnusedDataAndEventsDiag
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability No impact

1-386

Diagnostics Pane: Stateflow®

Application Setting
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution warning
See Also

¢ Configuration Parameters Dialog Box
® Stateflow Diagnostics
¢ “Diagnostic for Detecting Unused Data”

¢ “Diagnostic for Detecting Unused Events”

1-387

1 Configuration Parameters Dialog Box

1-388

Unexpected backtracking

Select the diagnostic action to take when a chart junction has both of the
following conditions. The junction:

® Does not have an unconditional transition path to a state or a terminal
junction

e Has multiple transition paths leading to it

This chart configuration can lead to undesired backtracking during
simulation.

Settings
Default: warning

none
No warning or error appears.

warning
A warning appears, with a link to examples of undesired backtracking.

error
An error appears and stops the simulation.

Tip
To avoid undesired backtracking, consider adding an unconditional transition
from the chart junction to a terminal junction.

Command-Line Information

Parameter: SFUnexpectedBacktrackingDiag
Type: string

Value: 'none' | 'warning' | 'error'
Default: 'warning'

Diagnostics Pane: Stateflow®

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact (for simulation)
No impact (for production code generation)
Safety precaution error
See Also

¢ Configuration Parameters Dialog Box
e Stateflow Diagnostics
e “Best Practices for Creating Flow Charts”

e “Backtrack in Flow Charts”

1-389

1 Configuration Parameters Dialog Box

1-390

Invalid input data access in chart initialization

Select the diagnostic action to take when a chart:

e Has the ExecuteAtInitialization property set to true

® Accesses input data on a default transition or associated state entry
actions, which execute at chart initialization

In this chart configuration, blocks that connect to chart input ports might not
initialize their outputs during initialization. Use this diagnostic to locate this
configuration in your model and correct it.

Settings
Default: warning

none
No warning or error appears.

warning
A warning appears.

error
An error appears and stops the simulation.

Tip
In charts that do not contain states, the ExecuteAtInitialization property
has no effect.

Command-Line Information

Parameter: SFInvalidInputDataAccessInChartInitDiag
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'warning'

Diagnostics Pane: Stateflow®

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact (for simulation)
No impact (for production code generation)
Safety precaution error
See Also

¢ Configuration Parameters Dialog Box
e Stateflow Diagnostics

e “Execution of a Chart at Initialization”

1-391

1 Configuration Parameters Dialog Box

1-392

No unconditional default transitions

Select the diagnostic action to take when a chart does not have an
unconditional default transition to a state or a junction.

This chart configuration can cause inconsistency errors. Use this diagnostic
to locate this configuration in your model and correct it. If a chart contains
local event broadcasts or implicit events, detection of a state inconsistency
might not be possible until run time.

Settings
Default: warning

none
No warning or error appears.

warning
A warning appears.

error
An error appears and stops the simulation.

Command-Line Information

Parameter: SFNoUnconditionalDefaultTransitionDiag
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency No impact (for simulation)

none (for production code generation)

Safety precaution error

Diagnostics Pane: Stateflow®

See Also

¢ Configuration Parameters Dialog Box
e Stateflow Diagnostics

e “State Inconsistencies in a Chart”

1-393

1 Configuration Parameters Dialog Box

Transition outside natural parent

Select the diagnostic action to take when a chart contains a transition that
loops outside the parent state or junction.

Settings
Default: warning

none
No warning or error appears.

warning
A warning appears.

error
An error appears and stops the simulation.

Command-Line Information

Parameter: SFTransitionOutsideNaturalParentDiag
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution error
See Also

¢ Configuration Parameters Dialog Box

1-394

Diagnostics Pane: Stateflow®

e Stateflow Diagnostics

1-395

1 Configuration Parameters Dialog Box

Transition shadowing

Select the diagnostic action to take when a chart contains multiple
unconditional transitions that originate from the same state or junction.

Settings
Default: warning

none
No warning or error appears.

warning
A warning appears.

error
An error appears and stops the simulation.

Command-Line Information

Parameter: SFUnconditionalTransitionShadowingDiag
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution error
See Also

¢ Configuration Parameters Dialog Box

1-396

Diagnostics Pane: Stateflow®

e Stateflow Diagnostics

® “Detection of Transition Shadowing”

1-397

1 Configuration Parameters Dialog Box

1-398

Undirected event broadcasts

Select the diagnostic action to take when a chart contains undirected local
event broadcasts.

Undirected local event broadcasts can cause unwanted recursive behavior
in a chart and inefficient code generation. Use this diagnostic to flag these
types of event broadcasts and fix them.

Settings
Default: warning
none
No warning or error appears.

warning
A warning appears.

error
An error appears and stops the simulation.

Command-Line Information

Parameter: SFUndirectedBroadcastEventsDiag
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency warning
Safety precaution error

Diagnostics Pane: Stateflow®

See Also

¢ Configuration Parameters Dialog Box
e Stateflow Diagnostics
® “Guidelines for Avoiding Unwanted Recursion in a Chart”

® “Broadcast Events to Synchronize States”

1-399

1 Configuration Parameters Dialog Box

1-400

Transition action specified before condition action

Select the diagnostic action to take when a transition action executes before a
condition action in a transition path with multiple transition segments.

When a transition with a specified transition action precedes a transition with
a specified condition action in the same transition path, out-of-order execution
can occur. Use this diagnostic to flag such behavior in your chart and fix it.

Settings
Default: warning

none
No warning or error appears.

warning
A warning appears.

error
An error appears and stops the simulation.

Command-Line Information

Parameter: SFTransitionActionBeforeConditionDiag
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'warning'

Recommended Settings

Application Setting
Debugging warning
Traceability warning
Efficiency warning
Safety precaution warning

Diagnostics Pane: Stateflow®

See Also

¢ Configuration Parameters Dialog Box
e Stateflow Diagnostics
® “Transition Action Types”

e “Transitions”

1-401

1 Configuration Parameters Dialog Box

Hardware Implementation Pane

Production hardware

Device vendaor: [Generir_ -] Device type: Unspecified (assume 32-bit Generic) - l
Mumber of bits Largest atomic size
char: 8 hort: 16 int: 32 :
ar sher = n = integer: [Char -]
long: 32 longlong: |54 float: 32
floating-paint: [None - l
double: |54 native: 32 pointer: | 32
Byte ordering: Unspedfied Signed integer division rounds to: Undefined -]
Shift right an a signed integer as arithmetic shift
Enable long long
Test hardware

Test hardware is the same as production hardware

In this section...

“Hardware Implementation Overview” on page 1-404
“Device vendor” on page 1-406

“Device type” on page 1-409

“Number of bits: char” on page 1-422
“Number of bits: short” on page 1-424
“Number of bits: int” on page 1-426
“Number of bits: long” on page 1-428
“Number of bits: long long” on page 1-429
“Number of bits: float” on page 1-432
“Number of bits: double” on page 1-433
“Number of bits: native” on page 1-434
“Number of bits: pointer” on page 1-436

“Largest atomic size: integer” on page 1-438

1-402

Hardware Implementation Pane

In this section...

“Largest atomic size: floating-point” on page 1-440

“Byte ordering” on page 1-442

“Signed integer division rounds to” on page 1-444

“Shift right on a signed integer as arithmetic shift” on page 1-447
“Enable long long” on page 1-449

“Test hardware is the same as production hardware” on page 1-451
“Device vendor” on page 1-453

“Device type” on page 1-455

“Number of bits: char” on page 1-468

“Number of bits: short” on page 1-470

“Number of bits: int” on page 1-472

“Number of bits: long” on page 1-474

“Number of bits: long long” on page 1-475

“Number of bits: float” on page 1-478

“Number of bits: double” on page 1-479

“Number of bits: native” on page 1-480

“Number of bits: pointer” on page 1-482

“Largest atomic size: integer” on page 1-484

“Largest atomic size: floating-point” on page 1-486

“Byte ordering” on page 1-488

“Signed integer division rounds to” on page 1-490

“Shift right on a signed integer as arithmetic shift” on page 1-493
“Enable long long” on page 1-495

1-403

1 Configuration Parameters Dialog Box

1-404

Hardware Implementation Overview

Describe the hardware characteristics for the modelled system, including
how to set up production and test hardware settings for both simulation and
code generation.

Note Hardware Implementation pane options do not control hardware or
compiler behavior: their purpose is solely to describe hardware and compiler
properties to MATLAB software, which uses the information to generate
code for the platform that runs as efficiently as possible, and gives bit-true
agreement for the results of integer and fixed-point operations in simulation,
production code, and test code.

Configuration

1 Choose the Device type in the Production hardware subpane.
2 Set the parameters displayed for the selected device type.
3 Apply the changes.

4 Repeat as required for Test hardware.

Tips

® To open the Hardware Implementation pane, in the Simulink Editor,
select Simulation > Model Configuration Parameters > Hardware
Implementation.

¢ This pane applies to models of computer-based systems, such as embedded
controllers.

® Specifying hardware characteristics enables simulation of the model to
detect error conditions that could arise when executing code, such as
hardware overflow.

Hardware Implementation Pane

See Also

e Configuring Hardware Properties
¢ Configuration Parameters Dialog Box

® Hardware Implementation Pane

1-405

1 Configuration Parameters Dialog Box

Device vendor

Select the manufacturer of the hardware you will use to implement the
production version of the system represented by this model.

Settings

Default: Generic

* AMD

® ARM Compatible

® ASIC/FPGA (Production hardware subpane only)
® Analog Devices

* Atmel

® Freescale

e Infineon

e Intel

® Microchip

® Renesas

® SGI

® STMicroelectronics
® Texas Instruments

® Generic

Tips
¢ Select the device vendor before you specify the hardware device used to
define your system’s constraints.

e [f your production hardware does not match any of the listed vendors,
select Generic.

¢ The Device vendor and Device type fields both share the same command
line parameter: ProdHWDeviceType. When specifying this parameter from

1-406

Hardware Implementation Pane

the command line, separate the device vendor and device type values using
the characters ->. For example: 'Intel->8051 Compatible'.

¢ [f you have a Simulink Coder license, to add Device vendor and Device
type values to the default set that is displayed on the Hardware
Implementation pane, see “Register Additional Device Vendor and Device
Type Values” in the Simulink Coder documentation.

Dependencies

Selecting a value for this parameter allows you to view a list of supported
devices from the selected vendor in the Device type drop-down menu.

Command-Line Information

Parameter: ProdHWDeviceType

Type: string

Value: any valid value (see tips)

Default: 'Generic->Unspecified (assume 32-bit Generic)'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

Device type (production hardware)

¢ Device vendor (test hardware)

Hardware Implementation Options

Specifying Production Hardware Characteristics

¢ Configuration Parameters Dialog Box

1-407

1 Configuration Parameters Dialog Box

¢ Hardware Implementation Pane

1-408

Hardware Implementation Pane

Device type

Select the type of hardware you will use to implement the production version
of the system represented by this model.

Settings
Default: Unspecified (assume 32 bit Generic)

Generic options:

® 16-bit Embedded Processor

® 32-bit Embedded Processor

® 32-bit Real-Time Simulator

® 32-bit x86 compatible

® 64-bit Embedded Processor (LLP64)
® 64-bit Embedded Processor (LP64)
® 8-bit Embedded Processor

® Custom

® MATLAB Host Computer (available as a Test hardware device and, for
MATLAB Coder configuration, as a Production hardware device)

® Unspecified (assume 32-bit Generic)
AMD® options:

e Athlon 64
® K5/K6/Athlon

ARMP Compatible options:

ARM 10

ARM 11
® ARM 7
* ARM 8

1-409

1 Configuration Parameters Dialog Box

e ARM 9
® ARM Cortex

ASIC/FPGA options: (Production hardware subpane only)
® ASIC/FPGA
Analog Devices™ options:

e Blackfin
® SHARC
® TigerSHARC

Atmel® options:
e AVR

Freescale™ options:

32-bit PowerPC
® 68332

* 68HCO08

® 68HC11

® ColdFire

® DSP563xx (16-bit mode)
® HC(S)12

® MPC52xx

* MPC5500

® MPC55xx

® MPC5xx

® MPC7400

® MPC7xxX

1-410

Hardware Implementation Pane

® MPC82xx
® MPC83xXx
® MPC85xx
® MPC86xXx
® MPC8xx
® S12x

Infineon® options:

® C16x, XC16x

e TriCore
Intel® options:

® 8051 Compatible
®* x86 64

® x86/Pentium
Microchip:

® PIC18
® dsPIC

Renesas® options:

* M16C
* M32C

R8C/Tiny

SH-2/3/4
® V850

SGI:

1-411

1 Configuration Parameters Dialog Box

1-412

® UltraSPARC IIi
STMicroelectronics®:

® ST10/Superi0

Texas Instruments™ options:

* C2000
* (5000
* (6000
* MSP430
® TMS470

Tips

e Select the device vendor before you specify the hardware device type.

® Selecting a device type specifies the hardware device to define your
system’s constraints:

Default hardware properties appear as the initial values.

Parameters with only one possible value cannot be changed.

Parameters with more than one possible value provide a list of legal
values.

= Static values for each device type are displayed in the following table.

= Parameters that you can modify are identified with an x.

Hardware Implementatio

n Pane

Key: float and double (not listed) always equal 32 and 64, respectively
pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int
Rounds to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte lkounk&hiﬂ' Enable

vendor / atomic ordering to right | long

Device type size long
chak shortint long | long | native int | float

lana

Generic

Unspecified| 8 16 | 32| 32 64 32 X | X Unspecifiexl Set | Clear

(assume

32-bit

Generic)

(default)

Custom X X | x X X X X X X X X

16-bit 16 16| 32 64 16 X X X X Set Clear

Embedded

Processor

32-bit 8 16 32| 32 64 32 X X X X Set Clear

Embedded

Processor

32-bit 8 16 32| 32 64 32 X X X X Set Clear

Real Time

Simulator

32-bit x86 | 8 16 32| 32 64 32 X X Little Zero | Set Clear

compatible Endian

1-413

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int
Rounds to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte ikounk&hiﬂ' Enable

vendor / atomic ordering to right | long

Device type size long
chat shortint long | long | native int | float

lane

64-bit 8 16 | 32| 32 64 32 X X X X Set X

Embedded

Processor

(LLPB4)

64-bit 8 16 | 32| 64 64 64 X |x X X Set |x

Embedded

Processor

(LP64)

8-bit 8 16 | 16| 32 64 8 X |x X X Set | Clear

Embedded

Processor

MATLAB 8 16 | 32| Host | 64 Host | x |x Little X Set | Host

Host specific specifie Endian specific

Computer value value value

(32 (32 (Set
or or or
64) 64) Clear)
AMD
Athlon 64 8 16 32| 64 64 64 X X Little b:¢ Set X
Endian
K5/K6/Athlon 8 16 | 32| 32 64 32 p: X Little X Set | x
Endian
ARM Compatible

1-414

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte i RounJ!Shiﬂ Enable
vendor / atomic ordering to right | long
Device type size long

chat shortint long | long | native int | float

lanea

ARM 8 16 | 32| 32 64 32 LongFloat | x X X X
7/8/9/10
ARM 11 8 16 | 32| 32 64 32 LongDoublg x X X X
ARM Cortex |8 16 | 32| 32 64 32 LongDoublg x X X X
ASIC/FPGA
ASIC/FPGA NA|NA | NANA |NA NA NA | NA NA NA NA | NA

Analog Devices

Blackfin 8 16 | 32| 32 64 32 LongDoubld Little Zero | Set |Xx

Endian

SHARC 32 | 32 | 32| 32 64 32 LongDoubld Big Zero | Set |Xx
Endian

TigerSHARC |32 |32 | 32|32 64 32 LongDoubld Little Zero | Set |x
Endian

Atmel

AVR 8 16 16| 32 64 8 X X Little Zero | Set X
Endian

Freescale

32-bit 8 16 | 32| 32 64 32 LongDoubld Big Zero | Set |x

PowerPC Endian

68332 8 16 | 32| 32 64 32 X | X Big X Set | x
Endian

1-415

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int
Rounds to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte lkounk&hiﬂ' Enable

vendor / atomic ordering to right | long

Device type size long
chat shortint long | long | native int | float

lana
68HC08 8 16 | 16| 32 64 8 X |Xx Big X Set | x
Endian
68HC11 8 16 16| 32 64 8 X X Big X Set X
Endian
ColdFire 8 16 | 32| 32 64 32 X | x Big Zero | Set |x
Endian

DSP563xx 8 16 16| 32 64 16 X X X X Set X

(16-bit

mode)

HC(S)12 8 16 | 16| 32 64 16 X | X Big X Set | x

Endian

MPC52xx , 8 16 | 32| 32 64 32 LongDoubld x Zero | Set |x

MPC5500,

MPC55xx ,

MPC5xx, ,

MPC7 XXX,

MPC82xx ,

MPC83xx ,

MPC86xx ,

MPC8xx

MPC7400 8 16 | 32| 32 64 32 LongDoubld x Zero | Set | Clear

MPC85xx 8 16 | 32| 32 64 32 LongFloat | x Zero | Set |x

1-416

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int
Rounds to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte lkounk&hiﬂ' Enable

vendor / atomic ordering to right | long

Device type size long
chat shortint long | long | native int | float

lane
S12x 8 16 | 16| 32 64 16 X X Big X Set | x
Endian

Infineon

C16x, 8 16 | 16| 32 64 16 X | x Little Zero | Set |x

XC16x Endian

TriCore 8 16 | 32| 32 64 32 X | X Little X Set | x

Endian
Intel
8051 8 16 | 16| 32 64 8 X |x X X Clear| x
Compatible
x86/64 8 16 | 32| 64 64 64 X | X Little X Set | x
Endian

x86/Pentium| 8 16 | 32| 32 64 32 X | X Little X Set | x
Endian

Microchip

PIC18 8 16 | 16| 32 64 8 X |x Little Zero | Set |Xx
Endian

dsPIC 8 16 16| 32 64 16 X X Little Zero | Set X
Endian

1-417

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int
Rounds to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte ikounk&hiﬂ' Enable

vendor / atomic ordering to right | long

Device type size long
chak shortint long | long | native int | float

lane

Renesas

M16C 8 16 | 16| 32 64 16 X X Little X X X
Endian

M32C 8 16 |x |32 64 X X | X Little X X X
Endian

R8C/Tiny 8 16 16| 32 64 16 X X Lattle X X X
Endian

SH-2/3/4 16 | 32| 32 64 32 X X X X X X

V850 16 | 32| 32 64 32 X X X X X X

SGI

UltraSPARC | 8 16 | 32| 32 64 32 X X Big X Set | x

IIi Endian

STMicroelectronics

ST10/Superi10Q 8 16 | 16| 32 64 16 X X Little Zero | Set |x

Endian

Texas Instruments

€2000 16 |16 | 16| 32 64 16 Int | None | x Zero | Set |x

C5000 16 |16 | 16| 32 64 16 Int | None | Big Zero | Set |Xx

Endian
C6000 8 16 | 32| 40 64 32 Int | None | x Zero | Set |x

1-418

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte lkounk&hiﬂ' Enable
vendor / atomic ordering to right | long
Device type size long
chat shortint long | long | native int | float
lana
MSP430 8 16 | 16| 32 64 16 X | x Little Zero | Set |x
Endian
TMS470 8 16 | 32| 32 64 X X X X X X X

e [f your production hardware does not match any of the listed types, select
Unspecified (assume 32-bit Generic) if it has the characteristics of a
generic 32-bit microprocessor; otherwise select Custom.

¢ The Device vendor and Device type fields both share the same command
line parameter: ProdHWDeviceType. When specifying this parameter from
the command line, separate the device vendor and device type values using
the characters ->. For example: 'Intel->8051 Compatible’.

¢ [f you have a Simulink Coder license, to add Device vendor and Device
type values to the default set that is displayed on the Hardware
Implementation pane, see “Register Additional Device Vendor and Device
Type Values” in the Simulink Coder documentation.

Dependencies

The options available in the drop-down menu are determined by the Device
vendor parameter.

Selecting ASIC/FPGA enables the Test hardware subpane.
Selecting any other device type sets the following device-specific parameters:

e Number of bits: char

1-419

1 Configuration Parameters Dialog Box

* Number of bits: short

* Number of bits: int

¢ Number of bits: long

¢ Number of bits: long long

* Number of bits: float

® Number of bits: double

* Number of bits: native

¢ Number of bits: pointer

¢ Largest atomic size: integer

* Largest atomic size: floating-point

* Byte ordering

¢ Signed integer division rounds to

e Shift right on a signed integer as arithmetic shift
¢ Enable long long

Whether you can modify a device-specific parameter varies according to

device type. Parameters that cannot be modified for a device are greyed out in
the GUI display.

Command-Line Information

Parameter: ProdHWDeviceType

Type: string

Value: any valid value (see tips)

Default: 'Generic->Unspecified (assume 32-bit Generic)'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-420

Hardware Implementation Pane

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

® Device vendor (production hardware)

® Device type (test hardware)

Hardware Implementation Options

Specifying Production Hardware Characteristics

Configuration Parameters Dialog Box

Hardware Implementation Pane

1-421

1 Configuration Parameters Dialog Box

1-422

Number of bits: char
Describe the character bit length for the production hardware.

Settings

Default: 8

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.
Tip

All values must be a multiple of 8.
Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: ProdBitPerChar
Type: integer

Value: any valid value
Default: 8

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Hardware Implementation Pane

Application Setting

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

® Hardware Implementation Options
¢ Specifying Production Hardware Characteristics
¢ Configuration Parameters Dialog Box

* Hardware Implementation Pane

1-423

1 Configuration Parameters Dialog Box

1-424

Number of bits: short
Describe the data bit length for the production hardware.

Settings

Default: 16

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.
Tip

All values must be a multiple of 8.
Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: ProdBitPerShort
Type: integer

Value: any valid value
Default: 16

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Hardware Implementation Pane

Application Setting

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

® Hardware Implementation Options
¢ Specifying Production Hardware Characteristics
¢ Configuration Parameters Dialog Box

* Hardware Implementation Pane

1-425

1 Configuration Parameters Dialog Box

Number of bits: int
Describe the data integer bit length for the production hardware.

Settings

Default: 32

Minimum: 8

Maximum: 32

Enter a number between 8 and 32.
Tip

All values must be a multiple of 8.
Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: ProdBitPerInt
Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-426

Hardware Implementation Pane

Application Setting

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

® Hardware Implementation Options
¢ Specifying Production Hardware Characteristics
¢ Configuration Parameters Dialog Box

* Hardware Implementation Pane

1-427

1 Configuration Parameters Dialog Box

1-428

Number of bits: long
Describe the data bit lengths for the production hardware.

Settings

Default: 32

Minimum: 32

Maximum: 128

Enter a value between 32 and 128.

Tip

All values must be a multiple of 8 and between 32 and 128.
Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: ProdBitPerlLong
Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Hardware Implementation Pane

Application Setting

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

® Hardware Implementation Options
¢ Specifying Production Hardware Characteristics
¢ Configuration Parameters Dialog Box

* Hardware Implementation Pane

Number of bits: long long

Describe the length in bits of the C long long data type that the production
hardware supports.

Settings
Default: 64
Minimum: 64
Maximum: 128

The number of bits used to represent the C long long data type.
Tips

e Use the C long long data type only if your C compiler supports long long.

® You can change the value of this parameter for custom targets only. For

custom targets, all values must be a multiple of 8 and between 64 and 128.

1-429

1 Configuration Parameters Dialog Box

Dependencies

¢ Enable long long enables use of this parameter.

® The value of this parameter must be greater than or equal to the value
of Number of bits: long.

® Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

® This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: ProdBitPerLonglLong
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

* “Enable long long” on page 1-449
® Hardware Implementation Options

¢ Specifying Production Hardware Characteristics

1-430

Hardware Implementation Pane

¢ Configuration Parameters Dialog Box

® Hardware Implementation Pane

1-431

1 Configuration Parameters Dialog Box

Number of bits: float

Describe the bit length of floating-point data for the production hardware
(read-only)

Settings
Default: 32

Always equals 32.

Command-Line Information

Parameter: ProdBitPerFloat
Type: integer

Value: 32 (read-only)
Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Configuration Parameters Dialog Box

Hardware Implementation Pane

1-432

Hardware Implementation Pane

Number of bits: double

Describe the bit-length of double data for the production hardware
(read-only).

Settings
Default: 64

Always equals 64.

Command-Line Information

Parameter: ProdBitPerDouble
Type: integer

Value: 64 (read only)

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Configuration Parameters Dialog Box

Hardware Implementation Pane

1-433

1 Configuration Parameters Dialog Box

Number of bits: native
Describe the microprocessor native word size for the production hardware.

Settings

Default: 32

Minimum: 8

Maximum: 64

Enter a value between 8 and 64.
Tip

All values must be a multiple of 8.
Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: ProdWordSize
Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-434

Hardware Implementation Pane

Application Setting

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

® Hardware Implementation Options
¢ Specifying Production Hardware Characteristics
¢ Configuration Parameters Dialog Box

* Hardware Implementation Pane

1-435

1 Configuration Parameters Dialog Box

1-436

Number of bits: pointer

Describe the bit-length of pointer data for the production hardware
(read-only).

Settings
Default: 64 for 64-bit devices; otherwise, matches the setting for “Number
of bits: int” on page 1-426

Minimum: 8

Maximum: 64

Command-Line Information

Parameter: ProdBitPerPointer

Type: integer

Value: any valid value (read-only)

Default: 64 for 64-bit devices; otherwise, matches the setting for
ProdBitPerInt

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Hardware Implementation Options
¢ Specifying Production Hardware Characteristics

¢ Configuration Parameters Dialog Box

Hardware Implementation Pane

¢ Hardware Implementation Pane

1-437

1 Configuration Parameters Dialog Box

1-438

Largest atomic size: integer

Specify the largest integer data type that can be atomically loaded and stored
on the production hardware.

Settings
Default: Char

Char
Specifies that char is the largest integer data type that can be
atomically loaded and stored on the production hardware.

Short
Specifies that short is the largest integer data type that can be
atomically loaded and stored on the production hardware.

Int
Specifies that int is the largest integer data type that can be atomically
loaded and stored on the production hardware.

Long
Specifies that 1long is the largest integer data type that can be
atomically loaded and stored on the production hardware.

LongLong
Specifies that long long is the largest integer data type that can be
atomically loaded and stored on the production hardware.

Tip

This parameter is used, where possible, to optimize away unnecessary
double-buffering or unnecessary semaphore protection, based on data size,
in generated multirate code.

Dependencies
® Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Hardware Implementation Pane

® You can set this parameter to LongLong only if the production hardware

supports the C long long data type and you have selected Enable long
long.

Command-Line Information

Parameter: ProdLargestAtomicInteger

Type: string

Value: 'Char' | 'Short' | 'Int' | 'Long' | 'LongLong'
Default: 'Char'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Configuration Parameters Dialog Box

Hardware Implementation Pane

1-439

1 Configuration Parameters Dialog Box

1-440

Largest atomic size: floating-point

Specify the largest floating-point data type that can be atomically loaded and
stored on the production hardware.

Settings
Default: None

Float
Specifies that float is the largest floating-point data type that can be
atomically loaded and stored on the production hardware.

Double
Specifies that double is the largest floating-point data type that can be
atomically loaded and stored on the production hardware.

None
Specifies that there is no applicable setting or not to use this parameter
in generating multirate code.

Tip

This parameter is used, where possible, to optimize away unnecessary
double-buffering or unnecessary semaphore protection, based on data size,
in generated multirate code.

Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: ProdLargestAtomicFloat
Type: string

Value: 'Float' | 'Double' | 'None'’
Default: 'None'

Hardware Implementation Pane

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

® Hardware Implementation Options
¢ Specifying Production Hardware Characteristics
¢ Configuration Parameters Dialog Box

® Hardware Implementation Pane

1-441

1 Configuration Parameters Dialog Box

1-442

Byte ordering

Describe the byte ordering for the production hardware.

Settings
Default: Unspecified
Unspecified

Specifies that the code determines the endianness of the hardware.
This is the least efficient choice.

Big Endian
The most significant byte appears first.

Little Endian
The least significant byte appears first.

Dependencies
e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: ProdEndianess

Type: string

Value: 'Unspecified' | 'LittleEndian' | 'BigEndian’
Default: 'Unspecified'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Hardware Implementation Pane

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Configuration Parameters Dialog Box

Hardware Implementation Pane

1-443

1 Configuration Parameters Dialog Box

1-444

Signed integer division rounds to

Describe how your compiler for the production hardware rounds the result of
dividing two signed integers.

Settings
Default: Undefined

Undefined

Choose this option if neither Zero nor Floor describes the compiler’s
behavior, or if that behavior is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer
that is closer to zero as the result.

Floor

If the quotient is between two integers, the compiler chooses the integer
that is closer to negative infinity.

Tips

Use the Integer rounding mode parameter on your model’s blocks to
simulate the rounding behavior of the C compiler that you use to compile
code generated from the model. This setting appears on the Signal
Attributes pane of the parameter dialog boxes of blocks that can perform
signed integer arithmetic, such as the Product block.

For most blocks, the value of Integer rounding mode completely defines
rounding behavior. For blocks that support fixed-point data and the
Simplest rounding mode, the value of Signed integer division rounds
to also affects rounding. For details, see “Rounding”.

See Hardware Implementation Options in the Simulink Coder
documentation for information on how this option affects code generation.

The following table illustrates the compiler behavior described by the
options for this parameter.

Hardware Implementation Pane

Ideal
N D N/D Zero | Floor Undefined
33 4 8.25 8 8 8
-33 4 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9
-33 -4 8.25 8 8 8or9

Dependency
® Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: ProdIntDivRoundTo

Type: string

Value: 'Floor' | 'Zero' | 'Undefined’
Default: 'Undefined'’

Recommended settings

Application Setting

Debugging No impact for simulation and during
development.
Undefined for production code generation.

Traceability No impact for simulation and during
development.
Zero or Floor for production code
generation.

1-445

1 Configuration Parameters Dialog Box

1-446

Application Setting

Efficiency No impact for simulation and during
development.
Zero for production code generation.

Safety precaution No impact for simulation and during
development.

Floor for production code generation.

See Also

® Hardware Implementation Options

Specifying Production Hardware Characteristics

Configuration Parameters Dialog Box

* Hardware Implementation Pane

Hardware Implementation Pane

Shift right on a signed integer as arithmetic shift

Describe how your compiler for the production hardware fills the sign bit
in a right shift of a signed integer.

Settings
Default: On

¥ On
Generates simple efficient code whenever the Simulink model performs
arithmetic shifts on signed integers.

I off
Generates fully portable but less efficient code to implement right
arithmetic shifts.

Tips
¢ Select this parameter if the C compiler implements a signed integer right
shift as an arithmetic right shift.

¢ An arithmetic right shift fills bits vacated by the right shift with the value
of the most significant bit, which indicates the sign of the number in twos
complement notation.

Dependency
® Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: ProdShiftRightIntArith
Type: string

Value: 'on' | 'off!'

Default: 'on'

1-447

1 Configuration Parameters Dialog Box

Recommended settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On

Safety precaution No impact
See Also

® Hardware Implementation Options
¢ Specifying Production Hardware Characteristics
¢ Configuration Parameters Dialog Box

* Hardware Implementation Pane

1-448

Hardware Implementation Pane

Enable long long

Specify that your C compiler supports the C long long data type. Most C99
compilers support long long.

Settings
Default: Off

¥ On
Enables use of C long long data type for both simulation and code
generation on the production hardware.

I off
Disables use of C long long data type for simulation or code generation
on the production hardware.

Tips

® This parameter is enabled only if the selected production hardware
supports the C long long data type.

e [If your compiler does not support C long long, do not select this parameter.

Dependencies
This parameter enables Number of bits: long long.

Command-Line Information

Parameter: ProdLongLongMode
Type: string

Value: 'on' | 'off'

Default: 'off'

1-449

1 Configuration Parameters Dialog Box

1-450

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact

No impact
Target specific

No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

¢ “Number of bits: long long” on page 1-429

Hardware Implementation Options

Specifying Production Hardware Characteristics

Configuration Parameters Dialog Box

Hardware Implementation Pane

Hardware Implementation Pane

Test hardware is the same as production hardware
Specify whether the test hardware differs from the production hardware.

Settings
Default: On

¥ On
Specifies that the hardware used to test the code generated from

the model is the same as the production hardware, or has the same
characteristics.

I o
Specifies that the hardware used to test the code generated from the
model has different characteristics than the production hardware.

Tips

® You can generate code that runs on the test hardware but behaves as if it
had been generated for and executed on the deployment hardware.

¢ The Production hardware subpane specifies the deployment hardware
properties. The Test hardware subpane is used to specify the test
hardware properties.

Dependency

Enables the Test hardware subpane.

Command-Line Information

Parameter: ProdEqTarget
Type: string

Value: 'on' | 'off'
Default: 'on'

1-451

1 Configuration Parameters Dialog Box

1-452

Recommended settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

More information

Specifying Test Hardware Characteristics

® Hardware Implementation Options

Configuration Parameters Dialog Box

* Hardware Implementation Pane

Hardware Implementation Pane

Device vendor

Select the manufacturer of the hardware that will be used to test the code
generated from the model.

Settings

Default: Generic

AMD

ARM Compatible
ASIC/FPGA (Production hardware subpane only)
Analog Devices
Atmel

Freescale

Infineon

Intel

Microchip

Renesas

SGI
STMicroelectronics
Texas Instruments

Generic

Tips

¢ Select the device vendor before you specify the hardware device used to

define your system’s constraints.

e [f your test hardware does not match any of the listed vendors, select

Generic.

¢ The Device vendor and Device type fields both share the same command

line parameter: TargetHWDeviceType. When specifying this parameter

1-453

1 Configuration Parameters Dialog Box

1-454

from the command line, separate the device vendor and device type values
using the characters ->. For example: 'Intel->8051 Compatible'.

¢ [f you have a Simulink Coder license, to add Device vendor and Device
type values to the default set that is displayed on the Hardware
Implementation pane, see “Register Additional Device Vendor and Device
Type Values” in the Simulink Coder documentation.

Dependencies

Selecting a value for this parameter allows you to view a list of supported
devices from the selected vendor in the Device type drop-down menu.

Command-Line Information

Parameter: TargetHWDeviceType

Type: string

Value: any valid value (see tips)

Default: 'Generic->Unspecified (assume 32-bit Generic)'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Device type (test hardware)

Specifying Test Hardware Characteristics

Hardware Implementation Options

¢ Configuration Parameters Dialog Box

Hardware Implementation Pane

Hardware Implementation Pane

Device type

Select the type of hardware that will be used to test the code generated from
the model.

Settings
Default: Unspecified (assume 32 bit Generic)

Generic options:

® 16-bit Embedded Processor

® 32-bit Embedded Processor

® 32-bit Real-Time Simulator

® 32-bit x86 compatible

® 64-bit Embedded Processor (LLP64)
® 64-bit Embedded Processor (LP64)
® 8-bit Embedded Processor

® Custom

® MATLAB Host Computer (available as a Test hardware device and, for
MATLAB Coder configuration, as a Production hardware device)

® Unspecified (assume 32-bit Generic)
AMD options:

e Athlon 64
® K5/K6/Athlon

ARM Compatible options:

* ARM 10
* ARM 11
® ARM 7
* ARM 8

1-455

1 Configuration Parameters Dialog Box

e ARM 9
® ARM Cortex

ASIC/FPGA options: (Production hardware subpane only)
® ASIC/FPGA
Analog Devices options:

e Blackfin
® SHARC
® TigerSHARC

Atmel options:
® AVR

Freescale options:

32-bit PowerPC
® 68332

* 68HCO08

® 68HC11

® ColdFire

® DSP563xx (16-bit mode)
® HC(S)12

® MPC52xx

* MPC5500

® MPC55xx

® MPC5xx

® MPC7400

® MPC7xxX

1-456

Hardware Implementation Pane

® MPC82xx
® MPC83xXx
® MPC85xx
® MPC86xXx
® MPC8xx
® S12x

Infineon options:

® C16x, XC16x

®e TriCore
Intel options:

® 8051 Compatible
®* x86 64

® x86/Pentium
Microchip:

® PIC18
® dsPIC

Renesas options:

* M16C
* M32C

R8C/Tiny

SH-2/3/4
® V850

SGI:

1-457

1 Configuration Parameters Dialog Box

1-458

® UltraSPARC IIi
STMicroelectronics:

® ST10/Superi0

Texas Instruments options:

* C2000
* (5000
* (6000
* MSP430
® TMS470

Tips

e Select the device vendor before you specify the hardware device type.

® Selecting a device type specifies the hardware device to define your
system’s constraints:

Default hardware properties appear as the initial values.

Parameters with only one possible value cannot be changed.

Parameters with more than one possible value provide a list of legal
values.

= Static values for each device type are displayed in the following table.

= Parameters that you can modify are identified with an x.

Hardware Implementatio

n Pane

Key: float and double (not listed) always equal 32 and 64, respectively
pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int
Rounds to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte lkounk&hiﬂ' Enable

vendor / atomic ordering to right | long

Device type size long
chak shortint long | long | native int | float

lana

Generic

Unspecified| 8 16 | 32| 32 64 32 X | X Unspecifiexl Set | Clear

(assume

32-bit

Generic)

(default)

Custom X X | x X X X X X X X X

16-bit 16 16| 32 64 16 X X X X Set Clear

Embedded

Processor

32-bit 8 16 32| 32 64 32 X X X X Set Clear

Embedded

Processor

32-bit 8 16 32| 32 64 32 X X X X Set Clear

Real Time

Simulator

32-bit x86 | 8 16 32| 32 64 32 X X Little Zero | Set Clear

compatible Endian

1-459

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int
Rounds to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte ikounk&hiﬂ' Enable

vendor / atomic ordering to right | long

Device type size long
chat shortint long | long | native int | float

lane

64-bit 8 16 | 32| 32 64 32 X X X X Set X

Embedded

Processor

(LLPB4)

64-bit 8 16 | 32| 64 64 64 X |x X X Set |x

Embedded

Processor

(LP64)

8-bit 8 16 | 16| 32 64 8 X |x X X Set | Clear

Embedded

Processor

MATLAB 8 16 | 32| Host | 64 Host | x |x Little X Set | Host

Host specific specifie Endian specific

Computer value value value

(32 (32 (Set
or or or
64) 64) Clear)
AMD
Athlon 64 8 16 32| 64 64 64 X X Little b:¢ Set X
Endian
K5/K6/Athlon 8 16 | 32| 32 64 32 p: X Little X Set | x
Endian
ARM Compatible

1-460

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte i RounJ!Shiﬂ Enable
vendor / atomic ordering to right | long
Device type size long

chat shortint long | long | native int | float

lanea

ARM 8 16 | 32| 32 64 32 LongFloat | x X X X
7/8/9/10
ARM 11 8 16 | 32| 32 64 32 LongDoublg x X X X
ARM Cortex |8 16 | 32| 32 64 32 LongDoublg x X X X
ASIC/FPGA
ASIC/FPGA NA|NA | NANA |NA NA NA | NA NA NA NA | NA

Analog Devices

Blackfin 8 16 | 32| 32 64 32 LongDoubld Little Zero | Set |Xx

Endian

SHARC 32 | 32 | 32| 32 64 32 LongDoubld Big Zero | Set |Xx
Endian

TigerSHARC |32 |32 | 32|32 64 32 LongDoubld Little Zero | Set |x
Endian

Atmel

AVR 8 16 16| 32 64 8 X X Little Zero | Set X
Endian

Freescale

32-bit 8 16 | 32| 32 64 32 LongDoubld Big Zero | Set |x

PowerPC Endian

68332 8 16 | 32| 32 64 32 X | X Big X Set | x
Endian

1-461

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int
Rounds to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte lkounk&hiﬂ' Enable

vendor / atomic ordering to right | long

Device type size long
chat shortint long | long | native int | float

lana
68HC08 8 16 | 16| 32 64 8 X |Xx Big X Set | x
Endian
68HC11 8 16 16| 32 64 8 X X Big X Set X
Endian
ColdFire 8 16 | 32| 32 64 32 X | x Big Zero | Set |x
Endian

DSP563xx 8 16 16| 32 64 16 X X X X Set X

(16-bit

mode)

HC(S)12 8 16 | 16| 32 64 16 X | X Big X Set | x

Endian

MPC52xx , 8 16 | 32| 32 64 32 LongDoubld x Zero | Set |x

MPC5500,

MPC55xx ,

MPC5xx, ,

MPC7 XXX,

MPC82xx ,

MPC83xx ,

MPC86xx ,

MPC8xx

MPC7400 8 16 | 32| 32 64 32 LongDoubld x Zero | Set | Clear

MPC85xx 8 16 | 32| 32 64 32 LongFloat | x Zero | Set |x

1-462

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int
Rounds to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte lkounk&hiﬂ' Enable

vendor / atomic ordering to right | long

Device type size long
chat shortint long | long | native int | float

lane
S12x 8 16 | 16| 32 64 16 X X Big X Set | x
Endian

Infineon

C16x, 8 16 | 16| 32 64 16 X | x Little Zero | Set |x

XC16x Endian

TriCore 8 16 | 32| 32 64 32 X | X Little X Set | x

Endian
Intel
8051 8 16 | 16| 32 64 8 X |x X X Clear| x
Compatible
x86/64 8 16 | 32| 64 64 64 X | X Little X Set | x
Endian

x86/Pentium| 8 16 | 32| 32 64 32 X | X Little X Set | x
Endian

Microchip

PIC18 8 16 | 16| 32 64 8 X |x Little Zero | Set |Xx
Endian

dsPIC 8 16 16| 32 64 16 X X Little Zero | Set X
Endian

1-463

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int
Rounds to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte ikounk&hiﬂ' Enable

vendor / atomic ordering to right | long

Device type size long
chak shortint long | long | native int | float

lane

Renesas

M16C 8 16 | 16| 32 64 16 X X Little X X X
Endian

M32C 8 16 |x |32 64 X X | X Little X X X
Endian

R8C/Tiny 8 16 16| 32 64 16 X X Lattle X X X
Endian

SH-2/3/4 16 | 32| 32 64 32 X X X X X X

V850 16 | 32| 32 64 32 X X X X X X

SGI

UltraSPARC | 8 16 | 32| 32 64 32 X X Big X Set | x

IIi Endian

STMicroelectronics

ST10/Superi10Q 8 16 | 16| 32 64 16 X X Little Zero | Set |x

Endian

Texas Instruments

€2000 16 |16 | 16| 32 64 16 Int | None | x Zero | Set |x

C5000 16 |16 | 16| 32 64 16 Int | None | Big Zero | Set |Xx

Endian
C6000 8 16 | 32| 40 64 32 Int | None | x Zero | Set |x

1-464

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) equals 64 for 64-bit devices; otherwise, matches
the setting for int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device Number of bits Largest Byte lkounk&hiﬂ' Enable
vendor / atomic ordering to right | long
Device type size long
chat shortint long | long | native int | float
lana
MSP430 8 16 | 16| 32 64 16 X | x Little Zero | Set |x
Endian
TMS470 8 16 | 32| 32 64 X X X X X X X

¢ [f your test hardware does not match any of the listed types, select
Unspecified (assume 32-bit Generic) if it has the characteristics of a
generic 32-bit microprocessor; otherwise select Custom.

¢ The Device vendor and Device type fields both share the same command
line parameter: TargetHWDeviceType. When specifying this parameter
from the command line, separate the device vendor and device type values
using the characters ->. For example: 'Intel->8051 Compatible'.

¢ To add Device vendor and Device type values to the default set that
is displayed on the Hardware Implementation pane, see “Register
Additional Device Vendor and Device Type Values” in the Simulink Coder
documentation.

Dependencies

The options available in the drop-down menu are determined by the Device
vendor parameter.

Selecting a device type sets the following device-specific parameters:

e Number of bits: char

e Number of bits: short

1-465

1 Configuration Parameters Dialog Box

* Number of bits: int

® Number of bits: long

¢ Number of bits: long long

® Number of bits: float

® Number of bits: double

® Number of bits: native

* Number of bits: pointer

¢ Largest atomic size: integer

* Largest atomic size: floating-point

¢ Byte ordering

® Signed integer division rounds to

e Shift right on a signed integer as arithmetic shift
¢ Enable long long

Whether you can modify a device-specific parameter varies according to

device type. Parameters that cannot be modified for a device are greyed out in
the GUI display.

Command-Line Information

Parameter: TargetHWDeviceType

Type: string

Value: any valid value (see tips)

Default: 'Generic->Unspecified (assume 32-bit Generic)'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-466

Hardware Implementation Pane

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

® Device vendor (test hardware)

Specifying Test Hardware Characteristics

Hardware Implementation Options

Configuration Parameters Dialog Box

Hardware Implementation Pane

1-467

1 Configuration Parameters Dialog Box

1-468

Number of bits: char
Describe the character bit length for the hardware used to test code.

Settings

Default: 8

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.
Tip

All values must be a multiple of 8.
Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: TargetBitPerChar
Type: integer

Value: any valid value
Default: 8

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Hardware Implementation Pane

Application Setting

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

¢ Specifying Test Hardware Characteristics
® Hardware Implementation Options
¢ Configuration Parameters Dialog Box

* Hardware Implementation Pane

1-469

1 Configuration Parameters Dialog Box

1-470

Number of bits: short
Describe the data bit length for the hardware used to test code.

Settings

Default: 16

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.
Tip

All values must be a multiple of 8.
Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: TargetBitPerShort
Type: integer

Value: any valid value

Default: 16

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Hardware Implementation Pane

Application Setting

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

¢ Specifying Test Hardware Characteristics
® Hardware Implementation Options
¢ Configuration Parameters Dialog Box

* Hardware Implementation Pane

1-471

1 Configuration Parameters Dialog Box

Number of bits: int
Describe the data integer bit length of the hardware used to test code.

Settings

Default: 32

Minimum: 8

Maximum: 32

Enter a number between 8 and 32.
Tip

All values must be a multiple of 8.
Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: TargetBitPerInt
Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-472

Hardware Implementation Pane

Application Setting

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

¢ Specifying Test Hardware Characteristics
® Hardware Implementation Options
¢ Configuration Parameters Dialog Box

* Hardware Implementation Pane

1-473

1 Configuration Parameters Dialog Box

1-474

Number of bits: long
Describe the data bit lengths for the hardware used to test code.

Settings
Default: 32

Minimum: 32
Maximum: 64

Enter a value between 32 and 64. (The value 64 is selected by default

if you run MATLAB software on a 64-bit host computer and select the
MATLAB host as the test hardware — that i1s, TargetHWDeviceType equals
'Generic->MATLAB Host Computer'.)

Tip
All values must be a multiple of 8 and between 32 and 64.

Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: TargetBitPerLong
Type: integer

Value: any valid value
Default: 32

Hardware Implementation Pane

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

¢ Specifying Test Hardware Characteristics
® Hardware Implementation Options
¢ Configuration Parameters Dialog Box

® Hardware Implementation Pane

Number of bits: long long

Describe the length in bits of the C long long data type that the test hardware
supports.

Settings
Default: 64
Minimum: 64

Maximum: 128

The number of bits used to represent the C long long data type.

Tips

e Use the long long data type only if your C compiler supports long long.

1-475

1 Configuration Parameters Dialog Box

® You can change the value for custom targets only. For custom targets, all
values must be a multiple of 8 and between 64 and 128.

Dependencies

¢ Enable long long enables use of this parameter.

® Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ The value of this parameter must be greater than or equal to the value
of Number of bits: long.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: TargetBitPerLonglLong
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

¢ “Enable long long” on page 1-495

1-476

Hardware Implementation Pane

Specifying Test Hardware Characteristics
Hardware Implementation Options
Configuration Parameters Dialog Box

Hardware Implementation Pane

1-477

1 Configuration Parameters Dialog Box

Number of bits: float

Describe the bit length of floating-point data for the hardware used to test
code (read-only).

Settings
Default: 32

Always equals 32.

Command-Line Information

Parameter: TargetBitPerFloat
Type: integer

Value: 32 (read-only)

Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Configuration Parameters Dialog Box

Hardware Implementation Pane

1-478

Hardware Implementation Pane

Number of bits: double

Describe the bit-length of double data for the hardware used to test code
(read-only).

Settings
Default: 64

Always equals 64.

Command-Line Information

Parameter: TargetBitPerDouble
Type: integer

Value: 64 (read only)

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Configuration Parameters Dialog Box

Hardware Implementation Pane

1-479

1 Configuration Parameters Dialog Box

1-480

Number of bits: native

Describe the microprocessor native word size for the hardware used to test
code.

Settings
Default: 32

Minimum: 8
Maximum: 64

Enter a value between 8 and 64. (The value 64 is selected by default if you run
MATLAB software on a 64-bit host computer and select the MATLAB host as
the test hardware — that is, TargetHWDeviceType equals 'Generic->MATLAB
Host Computer'.)

Tip

All values must be a multiple of 8.

Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: TargetWordSize
Type: integer

Value: any valid value
Default: 32

Hardware Implementation Pane

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

¢ Specifying Test Hardware Characteristics
® Hardware Implementation Options
¢ Configuration Parameters Dialog Box

® Hardware Implementation Pane

1-481

1 Configuration Parameters Dialog Box

1-482

Number of bits: pointer

Describe the bit-length of pointer data for the hardware used to test code
(read-only).

Settings
Default: 64 for 64-bit devices; otherwise, matches the setting for “Number
of bits: int” on page 1-472

Minimum: 8

Maximum: 64

Command-Line Information

Parameter: TargetBitPerPointer

Type: integer

Value: any valid value (read only)

Default: 64 for 64-bit devices; otherwise, matches the setting for
TargetBitPerInt

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Hardware Implementation Options
¢ Specifying Production Hardware Characteristics

¢ Configuration Parameters Dialog Box

Hardware Implementation Pane

¢ Hardware Implementation Pane

1-483

1 Configuration Parameters Dialog Box

1-484

Largest atomic size: integer

Specify the largest integer data type that can be atomically loaded and stored
on the hardware used to test code.

Settings
Default: Char

Char
Specifies that char is the largest integer data type that can be
atomically loaded and stored on the hardware used to test code.

Short
Specifies that short is the largest integer data type that can be
atomically loaded and stored on the hardware used to test code.

Int
Specifies that int is the largest integer data type that can be atomically
loaded and stored on the hardware used to test code.

Long
Specifies that 1long is the largest integer data type that can be
atomically loaded and stored on the hardware used to test code.

LongLong
Specifies that long long is the largest integer data type that can be
atomically loaded and stored on the hardware used to test code.

Tip

This parameter is used, where possible, to optimize away unnecessary
double-buffering or unnecessary semaphore protection, based on data size,
in generated multirate code.

Dependencies
® Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Hardware Implementation Pane

® You can set this parameter to LongLong only if the hardware used to test
the code supports the C long long data type and you have selected Enable
long long.

Command-Line Information

Parameter: TargetLargestAtomicInteger

Type: string

Value: 'Char' | 'Short' | 'Int' | 'Long' | 'LongLong'
Default: 'Char'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

® Hardware Implementation Options

¢ Specifying Production Hardware Characteristics
¢ Configuration Parameters Dialog Box

* Hardware Implementation Pane

* “Enable long long” on page 1-495

1-485

1 Configuration Parameters Dialog Box

1-486

Largest atomic size: floating-point

Specify the largest floating-point data type that can be atomically loaded and
stored on the hardware used to test code.

Settings
Default: None

Float
Specifies that float is the largest floating-point data type that can be
atomically loaded and stored on the hardware used to test code.

Double
Specifies that double is the largest floating-point data type that can be
atomically loaded and stored on the hardware used to test code.

None
Specifies that there is no applicable setting or not to use this parameter
in generating multirate code.

Tip

This parameter is used, where possible, to optimize away unnecessary
double-buffering or unnecessary semaphore protection, based on data size,
in generated multirate code.

Dependencies

e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: TargetLargestAtomicFloat
Type: string

Value: 'Float' | 'Double' | 'None'’
Default: 'None'

Hardware Implementation Pane

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

® Hardware Implementation Options
¢ Specifying Production Hardware Characteristics
¢ Configuration Parameters Dialog Box

® Hardware Implementation Pane

1-487

1 Configuration Parameters Dialog Box

Byte ordering

Describe the byte ordering for the hardware used to test code.

Settings
Default: Unspecified

Unspecified
Specifies that the code determines the endianness of the hardware.
This is the least efficient choice.

Big Endian
The most significant byte comes first.

Little Endian
The least significant byte comes first.

Note For guidelines to observe when configuring Production hardware
controls for code generation, see Hardware Implementation Options in the
Simulink Coder documentation.

Dependencies
e Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: TargetEndianess

Type: string

Value: 'Unspecified' | 'LittleEndian' | 'BigEndian’
Default: 'Unspecified'

1-488

Hardware Implementation Pane

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

¢ Specifying Test Hardware Characteristics
® Hardware Implementation Options
¢ Configuration Parameters Dialog Box

® Hardware Implementation Pane

1-489

1 Configuration Parameters Dialog Box

1-490

Signed integer division rounds to

Describe how your compiler for the test hardware rounds the result of dividing
two signed integers.

Settings
Default: Undefined

Undefined
Choose this option if neither Zero nor Floor describes the compiler’s
behavior, or if that behavior is unknown.

Zero
If the quotient is between two integers, the compiler chooses the integer
that is closer to zero as the result.

Floor
If the quotient is between two integers, the compiler chooses the integer
that is closer to negative infinity.

Tips

¢ Use the Integer rounding mode parameter on your model’s blocks to
simulate the rounding behavior of the C compiler that you use to compile
code generated from the model. This setting appears on the Signal
Attributes pane of the parameter dialog boxes of blocks that can perform
signed integer arithmetic, such as the Product block.

¢ For most blocks, the value of Integer rounding mode completely defines
rounding behavior. For blocks that support fixed-point data and the
Simplest rounding mode, the value of Signed integer division rounds
to also affects rounding. For details, see “Rounding”.

¢ See Hardware Implementation Options in the Simulink Coder
documentation for information on how this option affects code generation.

¢ The following table illustrates the compiler behavior described by the
options for this parameter.

Hardware Implementation Pane

Ideal
N D N/D Zero | Floor Undefined
33 4 8.25 8 8 8
-33 4 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9
-33 -4 8.25 8 8 8or9

Dependency
® Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

Command-Line Information

Parameter: TargetIntDivRoundTo
Type: string

Value: 'Floor' | 'Zero' | 'Undefined’
Default: 'Undefined'’

Recommended settings

Application Setting

Debugging No impact for simulation and during
development.
Undefined for production code generation.

Traceability No impact for simulation and during
development.
Zero or Floor for production code
generation.

1-491

1 Configuration Parameters Dialog Box

Application Setting

Efficiency No impact for simulation and during
development.
Zero for production code generation.

Safety precaution No impact for simulation and during
development.

Floor for production code generation.

See Also

Specifying Test Hardware Characteristics

® Hardware Implementation Options

Configuration Parameters Dialog Box

* Hardware Implementation Pane

1-492

Hardware Implementation Pane

Shift right on a signed integer as arithmetic shift

Describe how your compiler for the test hardware fills the sign bit in a right
shift of a signed integer.

Settings
Default: On

¥ On
Generates simple efficient code whenever the Simulink model performs
arithmetic shifts on signed integers.

I off
Generates fully portable but less efficient code to implement right
arithmetic shifts.

Tips
¢ Select this parameter if your C compiler implements a signed integer right
shift as an arithmetic right shift.

¢ An arithmetic right shift fills bits vacated by the right shift with the value
of the most significant bit, which indicates the sign of the number in twos
complement notation. It is equivalent to dividing the number by 2.

¢ This setting affects only code generation

Dependency

® Selecting a device using the Device vendor and Device type parameters
sets a device-specific value for this parameter.

¢ This parameter is enabled only if it can be modified for the currently
selected device.

1-493

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: TargetShiftRightIntArith
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On

Safety precaution No impact
See Also

¢ Specifying Test Hardware Characteristics
® Hardware Implementation Options
¢ Configuration Parameters Dialog Box

® Hardware Implementation Pane

1-494

Hardware Implementation Pane

Enable long long

Specify that your C compiler supports the C long long data type. Most C99
compilers support long long.

Settings
Default: Off

¥ On
Enables use of C long long data type on the test hardware.

I off
Disables use of C long long data type on the test hardware.

Tips
® This parameter is enabled only if the selected test hardware supports the C
long long data type.

e [If your compiler does not support C long long, do not select this parameter.

Dependencies
This parameter enables Number of bits: long long.

Command-Line Information

Parameter: TargetLongLongMode
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-495

1 Configuration Parameters Dialog Box

1-496

Application
Efficiency

Safety precaution

Setting
Target specific

No impact for simulation and during
development.

Match operation of compiler and hardware
for code generation.

See Also

¢ “Number of bits: long long” on page 1-475

Hardware Implementation Options

Specifying Production Hardware Characteristics

Configuration Parameters Dialog Box

Hardware Implementation Pane

Model Referencing Pane

Model Referencing Pane

é’;:, Configuration Parameters: f14/Configuration (Active)
Select: Build options for all referenced models ,.

E Rebuild: | If any changes detected 5 |

Data Import/Export

Optimization Farallel

Di ti —

e g || Enable parallel model reference builds MATLAB worker initialization for builds: |None

Hardware Implementation

Model Referencing

Simulation Target Options for referencing this model

Code Generation
Total number of instances allowed per top model: IMumpIe 'I
Propagate sizes of variable-size signals: |Lnfer from blocks in model '|

[T Minimize algebraic loop occurrences

|”] Propagate all signal labels out of the model

o

[7] Pass fixed-size scalar root inputs by value for code generation

Model dependencies:

_) oK]| Cancel H Help Apply

In this section...

“Model Referencing Pane Overview” on page 1-499

“Rebuild” on page 1-500

“Never rebuild diagnostic” on page 1-511

“Enable parallel model reference builds” on page 1-513
“MATLAB worker initialization for builds” on page 1-515

“Total number of instances allowed per top model” on page 1-517

“Pass fixed-size scalar root inputs by value for code generation” on page
1-519

1-497

1 Configuration Parameters Dialog Box

In this section...

“Minimize algebraic loop occurrences” on page 1-522
“Propagate all signal labels out of the model” on page 1-525
“Propagate sizes of variable-size signals” on page 1-528

“Model dependencies” on page 1-531

1-498

Model Referencing Pane

Model Referencing Pane Overview

Specify the options for including other models in this model, this model in
other models, and for building simulation and code generation targets.

Configuration
Set the parameters displayed.

Tips

® To open the Model Referencing pane, in the Simulink Editor,
select Simulation > Model Configuration Parameters > Model
Referencing.

® The Model Referencing pane allows you to specify options for:
= Including other models in this model.
= Including the current model in other models.

® The option descriptions use the term this model to refer to the model that
you are configuring and the term referenced model to designate models
referenced by this model.

See Also

e Model Dependencies
¢ Configuration Parameters Dialog Box

® Model Referencing Pane

1-499

1 Configuration Parameters Dialog Box

1-500

Rebuild

Select the method used to determine when to rebuild simulation and
Simulink Coder targets for referenced models before updating, simulating,
or generating code from this model.

There are four rebuild options. Two options, Always and Never, either always
rebuild the model reference target or never rebuild the target, respectively.
The other two options, If any changes detected and If any changes in
known dependencies detected, cause Simulink to check the model and its
dependencies to determine whether or not to rebuild the model reference
target. As part of this checking, Simulink:

® Automatically identifies a set of “known” target dependencies that it
examines for changes.

¢ May compute the model’s structural checksum, which reflects changes to
the model that can affect simulation results.

For additional background information to help you determine which rebuild
option setting to use, see the “Definitions” and “Tips” sections.

Settings
Default: If any changes detected

Always
Always rebuild targets referenced by this model before simulating,
updating, or generating code from this model.

If any changes detected
Rebuild a target for a referenced model if Simulink detects a change
that could affect simulation results. To do this, Simulink first looks for
changes to the target dependencies and to the model, and, if none are
found, it then computes the structural checksum of the model to check
that the model reference target is up to date.

If any changes in known dependencies detected
Rebuild a target if Simulink detects a change in target dependencies
or in both the model and its structural checksum. If Simulink does
not detect a change in target dependencies or the model, it does not
compute the structural checksum of the model and does not rebuild the

Model Referencing Pane

model reference target. You must list all user-created dependencies
in the Configuration Parameters > Model Referencing > Model
dependencies parameter.

Never

Never rebuild targets referenced by this model before simulating,
updating, or generating code from this model.

Definitions

Known target dependencies
Known target dependencies are files and data outside of model files
that Simulink examines for changes when checking to see if a model
reference target is up to date. Simulink automatically computes a set
of known target dependencies. Simulink examines the known target
dependencies to determine whether they have changed, which it can do
quickly. Examples of known target dependencies are:

¢ Changes to the model workspace, if its data source is a MAT-file or
MATLAB file

¢ Enumerated type definitions
e User-written S-functions and their TLC files
¢ Files specified in the Model dependencies parameter

e External files used by Stateflow, a MATLAB Function block, or a
MATLAB System block

Potential target dependencies
Potential dependencies are files and data outside of model files, as well
as model configuration settings, that Simulink examines for changes
when checking to see if a model reference target is up to date. Simulink
automatically computes the set of potential dependencies. Simulink
examines the potential dependencies, which it can do quickly. Examples
of potential dependencies are:

¢ Changes to global variables

¢ Changes to the Configuration Parameters > Code
Generation > Generate code only parameter

¢ Changes to targets of models referenced by this model

1-501

1 Configuration Parameters Dialog Box

1-502

¢ The Configuration Parameters > Diagnostics > Data
Validity > Signal resolution parameter is set to a value other than
Explicit only.

Simulink examines each potential target dependency to determine
whether that the state of that dependency is a trigger for causing a
structural checksum check.

User-created dependencies

Although Simulink automatically examines every known target
dependency, you can have files that can impact the simulation results
of your model that Simulink does not automatically identify. Some
examples of user-created dependencies are:

e MATLAB files that contain code executed by callbacks
e MAT-files that contain definitions for variables used by the model

that are loaded as part of a customized initialization script

You can add user-created dependencies to the set of known target
dependencies by using the Model dependencies parameter.

Structural checksum

As part of determining whether a model reference target is up to date,
Simulink may compute the structural checksum of a model, which
reflects changes to the model that can affect simulation results.

When Simulink computes the structural checksum, it loads and compiles
the model. To compile the model, Simulink must execute callbacks and
access all variables that the model uses. As a result, the structural
checksum reflects changes to the model that can affect simulation
results, including changes in user-created dependencies, regardless

of whether you have specified those user-created dependencies in the
Model dependencies parameter.

For more information about the kinds of changes that affect the
structural checksum, see the Simulink.BlockDiagram.getChecksum
documentation.

Model Referencing Pane

Tips

® You do not need to have the same rebuild option setting for every model
in a model reference hierarchy. When you simulate, update, or generate
code for a model, the rebuild option setting for that model applies to all
models that it references.

® To improve rebuild detection speed and accuracy, use the Model
dependencies parameter to specify user-created dependencies. If you use
the If any changes in known dependencies detected rebuild option,
then specify all user-created dependencies for your model in the Model
dependencies parameter.

e Each rebuild option setting has benefits and limitations, depending on
your rebuild goal. The following table lists the options in the order of the
thoroughness of rebuild detection. For detailed information about how
Simulink determines whether a model reference target is out of date, see
the Change Detection Processing on page 1-506 table, which is part of the
next tip.

Benefits and Limitations of Each Option

Rebuild Goal Rebuild Option Notes

Setting
Make all the model Always Requires the most
reference targets up to processing time.
date.

Can trigger
unnecessary builds
before simulating,
updating, or
generating code from a
referenced model.

Before you deploy a
model, use the Always
setting.

Perform extensive If any changes Default.
detection of changes detected

1-503

1 Configuration Parameters Dialog Box

Benefits and Limitations of Each Option (Continued)

Rebuild Goal

Rebuild Option
Setting

Notes

to dependencies of the
referenced models.

Reduces the number of
rebuilds, compared to
the Always setting.

Detects changes in
the dependencies of
the target, as well

as changes in the
structural checksum of
the referenced model.

The structural
checksum can detect
changes that occur

in user-created
dependencies that are
not specified with the
Model dependencies
parameter.

Reduce time required
for rebuild detection.

1-504

If any changes in
known dependencies
detected

Reduces the number of
rebuilds, compared to
the If any changes
detected option.
Ignores cosmetic
changes, such as
annotation changes, in
the referenced model
and its libraries.

Subset of the checks
performed by the
If any changes
detected option.

Invalid simulation
results may occur if

Model Referencing Pane

Benefits and Limitations of Each Option (Continued)

Rebuild Goal

Rebuild Option
Setting

Notes

you do not specify
with the Model
dependencies
parameter every
user-created
dependency.

Avoid rebuilds during
model development.

Never

Least amount of
processing time, but
requires that you
ensure that the model
reference targets are
up to date.

If you are certain that
the model reference
targets are up to
date, you can use
this option to avoid
target dependency
checking when
simulating, updating,
or generating code
from a model.

May lead to invalid
results if referenced
model targets are not
in fact up to date.

To have Simulink
check for changes
in known target
dependencies and
report if the model
reference targets
may be out of date,

1-505

1 Configuration Parameters Dialog Box

Benefits and Limitations of Each Option (Continued)

Rebuild Goal Rebuild Option Notes
Setting

use the Never
rebuild diagnostic
parameter.

To manually rebuild
model reference
targets, use the
slbuild function.

¢ To detect whether to perform a rebuild, Simulink uses different processing
for each Rebuild setting. The following table summarizes the main types
of change detection checks that Simulink performs.

Change Detection Processing

Rebuild Option Simulink Change Detection Processing
Setting
Always Does no change detection processing.

Always rebuilds targets referenced by this model
before simulating, updating, or generating code
from this model.

If any changes See the flow chart, below.
detected

and

If any changes in
known dependencies
detected

Never Change detection processing determined by the
Never rebuild diagnostic parameter.

The following flow chart describes the processing Simulink performs
when you set Rebuild to either If any changes detected or If any
changes in known dependencies detected. The “Compare Checksum”

1-506

Model Referencing Pane

boxes indicate that Simulink detects whether the structural checksum has
changed. If the structural checksum has changed, then Simulink performs
a rebuild.

1-507

1 Configuration Parameters Dialog Box

Known Target
Dependancy
Changed?

Rebuild

I1f any changes
detected

Maodel Files or
Libraries Changed?

What is the

Rebuild Setting? Rebuild

If any changes
in known
dependencies
detected

NO l

Compare
Checksum

YES Compare
Checksum

If any changes
What is the detected

Rebuild Setting?

Compare
Checksum

If any changes
in known
dependencies
detected

1-508 Do not Rebuild

Model Referencing Pane

¢ The following examples illustrate differences between the If any changes
detected and If any changes in known dependencies detected
options.

If you change a MATLAB file that is executed as part of a callback script
(or other user-created dependency) that you have not listed in the Model
dependencies parameter:

= If any changes detected — Causes a rebuild, because the change to
the file changes the structural checksum of the model.

= If any changes in known dependencies detected — Does not cause
a rebuild, because no known target dependency has changed.

If you move a block in a model:

= If any changes detected — Causes a rebuild, because the model has
changed.

= If any changes in known dependencies detected — Does not cause
a rebuild, because this change does not change the model’s structural
checksum.

Dependency

Selecting Never enables the Never rebuild diagnostic parameter.

Command-Line Information

Parameter: UpdateModelReferenceTargets

Type: string

Value: 'Force' | 'IfOutOfDateOrStructuralChange' | 'IfOutOfDate’
| 'AssumeUpToDate'

Default: 'IfOutOfDateOrStructuralChange'’

UpdateModelReferenceTargeEquivalent Rebuild Value
Value

'Force' Always
'IfOutOfDateOrStructuralClisngmy changes detected

1-509

1 Configuration Parameters Dialog Box

1-510

UpdateModelReferenceTarg&iquivqlent Rebuild Value

Value

‘IfOutOfDate’ If any changes in known dependencies
detected

‘AssumeUpToDate' Never

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution

If any changes detected or Never

If you use the Never setting, then set the
Never rebuild diagnostic parameter to
Error if rebuild required.

See Also

® Model Dependencies

¢ Configuration Parameters Dialog Box

® Model Referencing Pane

® Simulink.BlockDiagram.getChecksum

Model Referencing Pane

Never rebuild diagnostic

Select the diagnostic action that Simulink software should take if it detects
a model reference target that needs to be rebuilt.

Settings
Default: Error if rebuild required

none
Simulink takes no action.

Warn if rebuild required
Simulink displays a warning.

Error if rebuild required
Simulink terminates the simulation and displays an error message.

Tip

If you set the Rebuild parameter to Never and set the Never rebuild
diagnostic parameter to Error if rebuild required or Warn if rebuild
required, then Simulink:

¢ Performs the same change detection processing as for the If any changes
in known dependencies detected rebuild option setting, except it does
not compare structural checksums

® [ssues an error or warning (depending on the Never rebuild diagnostic
setting), if it detects a change

¢ Never rebuilds the model reference target

Selecting None bypasses dependency checking, and thus enables faster
updating, simulation, and code generation. However, the None setting can
cause models that are not up to date to malfunction or generate incorrect
results. For more information on the dependency checking, see “Rebuild” on
page 1-500.

Dependency
This parameter is enabled only if you select Never in the Rebuild field.

1-511

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: CheckModelReferenceTargetMessage
Type: string

Value: 'none' | 'warning' | 'error'

Default: 'error'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Error if rebuild required
See Also

® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Model Referencing Pane

1-512

Model Referencing Pane

Enable parallel model reference builds

Specify whether to use automatic parallel building of the model reference
hierarchy whenever possible.

Settings
Default: Off

¥ On
Simulink software builds the model reference hierarchy in parallel

whenever possible (based on computing resources and the structure
of the model reference hierarchy).

I ofr

Simulink never builds the model reference hierarchy in parallel.

Dependency

Selecting this option enables the MATLAB worker initialization for
builds parameter.

Command-Line Information

Parameter: EnableParallelModelReferenceBuilds
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

1-513

1 Configuration Parameters Dialog Box

See Also

e “Reduce Update Time for Referenced Models”

¢ “Reduce Build Time for Referenced Models” in the Simulink Coder
documentation

¢ Configuration Parameters Dialog Box

e Model Referencing Pane

1-514

Model Referencing Pane

MATLAB worker initialization for builds
Specify how to initialize MATLAB workers for parallel builds.

Settings
Default: None

None
Simulink software takes no action. Specify this value if the child models
in the model reference hierarchy do not rely on anything in the base
workspace beyond what they explicitly set up (for example, with a
model load function).

Copy base workspace
Simulink attempts to copy the base workspace to each MATLAB
worker. Specify this value if you use a setup script to prepare the base
workspace for all models to use.

Load top model
Simulink loads the top model on each MATLAB worker. Specify this
value if the top model in the model reference hierarchy handles all of
the base workspace setup (for example, with a model load function).

Limitation

For values other than None, limitations apply to global variables in the base
workspace. Global variables are not propagated across parallel workers and
do not reflect changes made by top and child model scripts.

Dependency
Selecting the option Enable parallel model reference builds enables
this parameter.

Command-Line Information

Parameter: ParallelModelReferenceMATLABWorkerInit
Type: string

Value: 'None' | 'Copy Base Workspace' | 'Load Top Model'
Default: 'None'

1-515

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

“Reduce Update Time for Referenced Models”

“Reduce Build Time for Referenced Models” in the Simulink Coder
documentation

Configuration Parameters Dialog Box

Model Referencing Pane

1-516

Model Referencing Pane

Total number of instances allowed per top model
Specify how many references to this model can occur in another model.

Settings
Default: Multiple

Zero
The model cannot be referenced. An error occurs if a reference to the
model occurs in another model.

One
The model can be referenced at most once in a model reference
hierarchy. An error occurs if more than one reference exists.

Multiple
The model can be referenced more than once in a hierarchy, provided
that it contains no constructs that preclude multiple reference. An
error occurs if the model cannot be multiply referenced, even if only
one reference exists.

To use multiple instances of a referenced model in Normal mode, use
the Multiple setting. For details, see “Using Normal Mode for Multiple
Instances of Referenced Models”.

Command-Line Information

Parameter: ModelReferenceNumInstancesAllowed
Type: string

Value: 'Zero' | 'Single' | 'Multi’

Default: 'Multi'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-517

1 Configuration Parameters Dialog Box

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

® Diagnosing Simulation Errors
¢ Configuration Parameters Dialog Box

® Model Referencing Pane

1-518

Model Referencing Pane

Pass fixed-size scalar root inputs by value for code
generation

Specify whether a model that calls (references) this model passes its scalar
inputs to this model by value.

Settings
Default: Off (GUI), 'on' (command-line)

I7On

A model that calls (references) this model passes scalar inputs to this
model by value.

I off
The calling model passes the inputs by reference (it passes the addresses
of the inputs rather than the input values).

Tips

¢ This option is ignored in either of these two cases:
= The C function prototype control is not the default.
= The C++ encapsulation interface is not the default.

® Passing root inputs by value allows this model to read its scalar inputs
from register or local memory, which is faster than reading the inputs
from their original locations.

¢ Enabling this parameter can result in the simulation behavior differing
from the generated code behavior under certain modeling semantics. If you
use the default setting of Enable all as errors for the Configuration
Parameters > Diagnostics > Connectivity > Context-dependent
inputs parameter, then Simulink reports cases where the modeling
semantics may result in inconsistent behaviors for simulation and for
generated code. If the diagnostic identifies an issue, latch the function-call
subsystem inputs. For more information about latching function-call
subsystems, see “Context-dependent inputs” on page 1-355.

e [If the Context-dependent inputs diagnostic reports no issues for a model,
consider enabling the Pass fixed-size scalar root inputs by value for

1-519

1 Configuration Parameters Dialog Box

code generation parameter, which usually generates more efficient code
for such a model.

e If you have a Simulink Coder license, selecting this option can affect reuse
of code generated for subsystems. See Reusable Code and Referenced
Models for more information.

e For SIM targets, a model that references this model passes inputs by
reference, regardless of how you set the Pass fixed-size scalar root
inputs by value for code generation parameter.

Command-Line Information

Parameter:ModelReferencePassRootInputsByReference
Type: string

Value: 'on' | 'off!'

Default: 'on'

Note The command-line values are reverse of the settings values. Therefore,
'on' in the command line corresponds to the description of “Off” in the
settings section, and 'off' in the command line corresponds to the description
of “On” in the settings section.

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off

See Also

® “Create a Function-Call Subsystem”

e Reusable Code and Referenced Models

1-520

Model Referencing Pane

¢ Configuration Parameters Dialog Box

® Model Referencing Pane

1-521

1 Configuration Parameters Dialog Box

1-522

Minimize algebraic loop occurrences

Try to eliminate artificial algebraic loops from a model that involve the
current referenced model

Settings
Default: Off

¥ On
Simulink software tries to eliminate artificial algebraic loops from a
model that involve the current referenced model.

I off
Simulink software does not try to eliminate artificial algebraic loops
from a model that involve the current referenced model.

Tips
Enabling this parameter together with the Simulink Coder Single
output/update function parameter results in an error.

Command-Line Information

Parameter: ModelReferenceMinAlgLoopOccurrences
Type: string

Value: 'on' | 'off!'

Default: 'off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off

Model Referencing Pane

See Also

® Model block

e “How Simulink Eliminates Artificial Algebraic Loops”
® Model Blocks and Direct Feedthrough

® Diagnosing Simulation Errors

¢ Configuration Parameters Dialog Box

e Model Referencing Pane

1-523

1 Configuration Parameters Dialog Box

1-524

Model Referencing Pane

Propagate all signal labels out of the model
Pass propagated signal names to output signals of Model block.

Settings
Default: Off

IFOn

Simulink propagates signal names to output signals of the Model block.

I off
Simulink does not propagate signal names to output signals of the
Model block.

Tips

¢ Enable this parameter for each instance of a referenced model for which
you want to propagate signal labels.

¢ The following models illustrate the default behavior, when signal label
propagation is enabled for every eligible signal. Inside the referenced
model, signal label propagation occurs as in any model. However, the
output signal from the Model block Out2 port displays empty brackets for
the propagated signal label.

" ex_sig_label_prop_referenced_model_default

1 1
. constEnt_sig

Cutl
Constant

Chirp Signal Goto

Cutz

From

1-525

l Configuration Parameters Dialog Box

@ ex_sig_label_prop_parent_default

ex_sig_label_prop_referenced_maodel_default

Outl fb——P 1
<constant_ sgF
Constant_Cutput

Gain
———————»
ovel >
’ Chirp_Output
Gain1

Maodel

¢ The following models illustrate the behavior when you enable the
Propagate all signal labels out of the model parameter for the
referenced model. The output signal from the Model block Out2 port

displays the propagated signal name (Chirp_sig), whose source is inside
the referenced model.

|ﬂ| ex_sig_label_prop_referenced_model_config_param_on

I ‘onstnt_sig

Constant
chirp_sig
Chirp Signal Goto

Out2

From

|i| ex_sig_label_prop_parent_config_param_on »

ex_sig_label_prop_referenced_model_config_param_on
Out! fb—— | 1
< gonstant_sig=
. Constant_Cuiput
Gain
Out2fp———— ..F'_
< ghirp_sig= > !
_ Chirp_Output
Gain1

Madel

1-526

Model Referencing Pane

Command-Line Information

Parameter: PropagateSignallLabelsOutOfModel

Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

Off

See Also

® Model block
® “Signal Label Propagation”

1-527

1 Configuration Parameters Dialog Box

Propagate sizes of variable-size signals

Select how variable-size signals propagate through referenced models.
Settings
Default: Infer from blocks in model

Infer from blocks in model
Searches a referenced model and groups blocks into the following

categories.
Category Description Example Blocks in This
Category
1 Output signal size Switch or Enable Subsystem block
depends on input whose parameter Propagate
signal values. sizes of variable-size signals is
set to During execution
2 States require Unit Delay block in an
resetting when the Enabled Subsystem whose
input signal size parameter Propagate sizes of
changes. variable-size signals is set to
Only when enabling
3 Output signal size Gain block.
depends only on the
input signal size.

The search stops at the boundary of Enable, Function-Call, and Action
subsystems because these subsystems can specify when to propagate
the size of a variable-size signal.

Simulink sets the propagation of variable-size signals for a referenced
model as follows:

® One or more blocks in category 1, and all other blocks are in category
3, select During execution.

¢ One or more blocks in category 2, and all another blocks are in
category 3, select Only when enabling.

1-528

Model Referencing Pane

¢ Blocks in category 1 and 2, report an error.

e All blocks in category 3 with a conditionally executed subsystem that
is not an Enable, Function-Call, or Action subsystem, report an error.
Simulink, in this case, cannot determine when to propagate sizes of
variable-size signals.

e All blocks in category 3 with only conditionally executed subsystems
that are an Enable, Function-Call, or Action subsystem, support both
Only with enabling and During execution

Only when enabling
Propagates sizes of variable-size signals for the referenced model only
when enabling (at Enable method).

During execution
Propagates sizes of variable-size signals for the referenced model during
execution (at Outputs method).

Command-Line Information

Parameter: PropagateVarSize

Type: string

Value: 'Infer from blocks in model' | 'Only when enabling'|
'During execution'

Default: 'Infer from blocks in model'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

¢ Configuration Parameters Dialog Box

1-529

1 Configuration Parameters Dialog Box

® Model Referencing Pane

1-530

Model Referencing Pane

Model dependencies

Although Simulink automatically examines every known target dependency,
you can have files that can impact the simulation results of your model that
Simulink does not automatically identify. Some examples of user-created
dependencies are:

e MATLAB files that contain code executed by callbacks

e MAT-files that contain definitions for variables used by the model that are
loaded as part of a customized initialization script

You can add user-created dependencies to the set of known target
dependencies by using the Model dependencies parameter.

Simulink examines the files specified with the Model dependencies
parameter when determining whether the model reference target is up to
date. If the Rebuild parameter is set to:

® Always, then the listed files are not examined.

e Either If any changes detected or If any changes in known
dependencies detected, then changes to listed files cause the model
reference target to rebuild.

® Never, and the Never rebuild diagnostic parameter is set to either Warn
if rebuild required or Error if rebuild required, then changes to
listed files cause Simulink to report a warning or error.

Settings
Default: '

® Specify the dependencies as a cell array of strings, where each cell array
entry is one of the following:

= File name — Simulink looks on the MATLAB path for a file with the
given name. If the file is not on the MATLAB path, then specify the path
to the dependent file, as described below.

= Path to the dependent file — The path can be relative or absolute, and
must include the file name.

1-531

1 Configuration Parameters Dialog Box

1-532

= Folder — Simulink treats every file in that folder as a dependent file.
Simulink does not include files of subfolders of the folder you specify.

¢ File names must include a file extensions (for example, .m or .mat)

® File names and paths can include spaces.

® You can use the following characters in the strings:

= The token $MDL, as a prefix to a dependency to indicate that the path to
the dependency is relative to the location of this model file

= An asterisk (*), as a wild card
= A percent sign (%), to comment out a line
= An ellipsis (...), to continue a line

For example:

{'D:\Work\parameters.mat', '$MDL\mdlvars.mat',
‘D:\Work\masks*.m'}

Tips

To improve rebuild detection speed and accuracy, use the Model
dependencies parameter to specify model dependencies other than those
that Simulink checks automatically as part of the its rebuild detection. For
details, see the Rebuild parameter documentation.

If the Rebuild setting is If any changes in known dependencies
detected, to prevent invalid simulation results, add every user-created
dependency (for example, MATLAB code files or MAT-files).

Using the Simulink Manifest Tools can help you to identify model
dependencies. For more information, see “Analyze Model Dependencies”.

If Simulink cannot find a specified dependent file when you update or
simulate a model that references this model, Simulink displays a warning.

The dependencies automatically include the model and linked library files,
so you do not need to specify those files with the Model dependencies
parameter.

Model Referencing Pane

Command-Line Information

Parameter: ModelDependencies

Type: string
Value: any valid value
Default: ''

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

* “Rebuild” on page 1-500

¢ Configuration Parameters Dialog Box

® Model Referencing Pane

1-533

1 Configuration Parameters Dialog Box

Simulation Target Pane: General

In this section...

“Simulation Target: General Tab Overview” on page 1-535

“Enable debugging/animation” on page 1-536

“Enable overflow detection (with debugging)” on page 1-538

“Ensure responsiveness” on page 1-540

“Echo expressions without semicolons” on page 1-542

“Ensure memory integrity” on page 1-544

“Generate typedefs for imported bus and enumeration types” on page 1-546

“Simulation target build mode” on page 1-547

1-534

Simulation Target Pane: General

Simulation Target: General Tab Overview

Configure the simulation target for a model that contains MATLAB Function
blocks, Stateflow charts, or Truth Table blocks.

S‘:o: Configuration Parameters: plcderno_simple_subsystem/Configuration (Active) @
Select: MATLAB and Stateflow =
Solver ¥ Enable debugging/animation 7| Echo expressions without semicolons
Data Import/Export E
- Optimization V| Enable overflow detection (with debugging) V| Ensure memory integrity
- Diagnostics .
7
Hardware Implementation Ensure responsiveness Generate typedefs for imperted bus and enumeration types
M.UdE| R_eferencmg Simulation target build mode: ‘Incrernenta\ build v| ‘ Execute |
4 Simulation Target
Symbols
Custom Code
- Code Generation
- HDL Code Generation
> Design Verifier
> PLC Code Generation
9 ok || cancel |[Help Apply
f‘ o
Configuration

Set the parameters that appear.

Tip
To open the Simulation Target pane, in the Simulink Editor, select
Simulation > Model Configuration Parameters > Simulation Target.

See Also

® Speeding Up Simulation
¢ Configuration Parameters Dialog Box

¢ Simulation Target Pane: General

1-535

1 Configuration Parameters Dialog Box

1-536

Enable debugging/animation

Enable debugging and animation during simulation of a model that contains
MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

Settings
Default: On

I70n

Enables debugging and animation of a model during simulation.

If you have a Stateflow license, this action also enables the Stateflow
Debugger.

™ ofr

Disables debugging and animation of a model during simulation.

If you have a Stateflow license, this action also disables the Stateflow
Debugger.

Tip
¢ If you disable debugging and animation, faster model simulation occurs.

Command-Line Information

Parameter: SFSimEnableDebug
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability No impact

Simulation Target Pane: General

Application Setting

Efficiency Off

Safety precaution On
See Also

® Speeding Up Simulation
¢ Configuration Parameters Dialog Box

® Simulation Target Pane: General

1-537

1 Configuration Parameters Dialog Box

1-538

Enable overflow detection (with debugging)

Enable overflow detection of data during simulation of a model that contains
MATLAB Function blocks, Stateflow charts, or Truth Table blocks. Overflow
occurs for data when a value assigned to it exceeds the numeric capacity

of the data type.

Settings
Default: On

IFOn

Enables overflow detection of data during simulation.

If you have a Stateflow license, you must also select the Data Range
check box in the Stateflow Debugger window.

™ ofr

Disables overflow detection of data during simulation.
Tips

¢ [f your model contains fixed-point data, enable overflow detection.

¢ [f you disable overflow detection, faster model simulation occurs.

Command-Line Information

Parameter: SFSimOverflowDetection
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability No impact

Simulation Target Pane: General

Application Setting

Efficiency Off

Safety precaution On
See Also

Speeding Up Simulation

Overflow Detection for Fixed-Point Types

Configuration Parameters Dialog Box

Simulation Target Pane: General

1-539

1 Configuration Parameters Dialog Box

Ensure responsiveness

Enables responsiveness checks in code generated for MATLAB Function
blocks.

Settings
Default: On
M on
Enables periodic checks for Ctrl+C breaks in code generated for

MATLAB Function blocks. Also allows graphics refreshing.
I o

Disables periodic checks for Ctrl+C breaks in code generated for
MATLAB Function blocks. Also disables graphics refreshing.

Caution Without these checks, the only way to end a long-running
execution might be to terminate the MATLAB session.

Command-Line Information

Parameter: SimCtrlC
Type: string

Value: 'on' | 'off!'
Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency Off
Safety precaution On

1-540

Simulation Target Pane: General

See Also

e “Control Run-Time Checks” in the Simulink User’s Guide
¢ Configuration Parameters Dialog Box

e Simulation Target Pane: General

1-541

1 Configuration Parameters Dialog Box

1-542

Echo expressions without semicolons

Enable run-time output in the MATLAB Command Window, such as actions
that do not terminate with a semicolon. This behavior applies to a model that
contains MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

Settings
Default: On

¥ On
Enables run-time output to appear in the MATLAB Command Window
during simulation.

I off
Disables run-time output from appearing in the MATLAB Command
Window during simulation.

Tip
¢ If you disable run-time output, faster model simulation occurs.

Command-Line Information

Parameter: SFSimEcho
Type: string

Value: 'on' | 'off!'
Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency Off

Safety precaution No impact

Simulation Target Pane: General

See Also

® Speeding Up Simulation
¢ Configuration Parameters Dialog Box

e Simulation Target Pane: General

1-543

1 Configuration Parameters Dialog Box

1-544

Ensure memory integrity

Detects violations of memory integrity in code generated for MATLAB
Function blocks and stops execution with a diagnostic.

Settings
Default: On

I7On

Detect violations of memory integrity in code generated for MATLAB
Function blocks and stops execution with a diagnostic message.

I off

Does not detect violations of memory integrity in code generated for
MATLAB Function blocks.

Caution Without these checks, violations result in unpredictable
behavior.

Tips

¢ The most likely cause of memory integrity issues is accessing an array
out of bounds.

¢ Only disable these checks if you are sure that your code is safe and that all
array bounds and dimension checking is unnecessary.

Command-Line Information

Parameter: SimIntegrity
Type: string

Value: 'on' | 'off'
Default: 'on'

Simulation Target Pane: General

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency Off

Safety precaution On
See Also

e “Control Run-Time Checks” in the Simulink User’s Guide
¢ Configuration Parameters Dialog Box

¢ Simulation Target Pane: General

1-545

1 Configuration Parameters Dialog Box

Generate typedefs for imported bus and enumeration
types

Determines typedef handling and generation for imported bus and
enumeration data types in Stateflow and MATLAB Function blocks.

Settings
Default: Off

¥ on
The software will generate its own typedefs for imported bus and
enumeration types.

I off
The software will not generate its own typedefs for imported bus and
enumeration types, and will use definitions in the included header file.
This setting requires you to include header files in Configuration

Parameters, under Simulation Target > Custom Code > Header
file.

Tips
¢ This selection applies if you are using imported bus or enumeration data
types in Stateflow and MATLAB Function blocks.

Command-Line Information

Parameter: SimGenImportedTypeDefs
Type: string

Value: 'on' | 'off'

Default: 'off'

1-546

Simulation Target Pane: General

Simulation target build mode

Specifies how you build the simulation target for a model that contains
MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

Settings
Default: Incremental build

Incremental build
This option rebuilds only those portions of the target that you changed
since the last build.

Rebuild all (including libraries)
This option rebuilds the target, including libraries, from scratch.

Make without generating code
This option invokes the make process without generating code.

Clean all (delete generated code/executables)
This option deletes both generated source code and executable files.

Clean objects (delete executables only)
This option deletes only executable files.

Tips

® The default Incremental build is a good choice for most models. This
action takes place whenever you simulate your model.

® Set Rebuild all (including libraries) if you have changed your
compiler or updated your object files since the last simulation. For example,
use this option to rebuild the simulation target to include custom code
changes.

® Set Make without generating code when you have custom source files
that you must recompile in an incremental build mechanism that does not
detect changes in custom code files.

1-547

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: SimBuildMode

Type: string

Value: 'sf_incremental build' | 'sf_nonincremental build' |
'sf_make' | 'sf_make _clean' | 'sf_make _clean objects'
Default: 'sf_incremental build'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

¢ Configuration Parameters Dialog Box

® Simulation Target Pane: General

1-548

Simulation Target Pane: Symbols

Simulation Target Pane: Symbols

Reserved names:

In this section...

“Simulation Target: Symbols Tab Overview” on page 1-550

“Reserved names” on page 1-551

1-549

1 Configuration Parameters Dialog Box

Simulation Target: Symbols Tab Overview

Configuration

1 Enter reserved names for a model that contains MATLAB Function blocks,
Stateflow charts, or Truth Table blocks.

2 Click Apply.
Tip
To open the Simulation Target: Symbols pane, in the Simulink Editor,

select Simulation > Model Configuration Parameters > Simulation
Target > Symbols.

See Also

¢ Configuration Parameters Dialog Box

¢ Simulation Target Pane: Symbols

1-550

Simulation Target Pane: Symbols

Reserved names

Enter the names of variables or functions in the generated code that match
the names of variables or functions specified in custom code for a model that
contains MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

Settings
Default: {}

This action changes the names of variables or functions in the generated
code to avoid name conflicts with identifiers in custom code. Reserved names
must be shorter than 256 characters.

Tips

e Start each reserved name with a letter or an underscore to prevent error
messages.

¢ Each reserved name must contain only letters, numbers, or underscores.

e Separate the reserved names using commas or spaces.

® You can also specify reserved names by using the command line:

config _param_object.set_param('SimReservedNameArray', {'abc','xyz'})

where config_param_object is the object handle to the model settings in the
Configuration Parameters dialog box.

Command-Line Information

Parameter: SimReservedNameArray

Type: string array

Value: any reserved names shorter than 256 characters
Default: {}

1-551

1 Configuration Parameters Dialog Box

1-552

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

¢ Configuration Parameters Dialog Box

® Simulation Target Pane: Symbols

Simulation Target Pane: Custom Code

Simulation Target Pane: Custom Code

¥ Parse custom code symbals

—Include custom C code in generated:

Source file Source file:
Header file
Initialize function
Terminate function

—Indude list of additional:

Indude directories Indude directories:
Source files
Libraries

In this section...

“Simulation Target: Custom Code Tab Overview” on page 1-555

“Parse custom code symbols” on page 1-556

“Source file” on page 1-558

1-553

1 Configuration Parameters Dialog Box

1-554

In this section...

“Header file” on page 1-559
“Initialize function” on page 1-561
“Terminate function” on page 1-562
“Include directories” on page 1-563
“Source files” on page 1-565
“Libraries” on page 1-567

“Use local custom code settings (do not inherit from main model)” on page
1-569

Simulation Target Pane: Custom Code

Simulation Target: Custom Code Tab Overview

Include custom code settings for a model that contains MATLAB Function
blocks, Stateflow charts, or Truth Table blocks.

Configuration

1 Select the type of information to include from the list on the left side of
the pane.

2 Enter a string to identify the specific code, folder, source file, or library.
3 Click Apply.

Tip

To open the Simulation Target: Custom Code pane, in the Simulink Editor,

select Simulation > Model Configuration Parameters > Simulation
Target > Custom Code.

See Also

¢ Including Custom C Code
¢ Configuration Parameters Dialog Box

e Simulation Target Pane: Custom Code

1-555

1 Configuration Parameters Dialog Box

Parse custom code symbols

Specify whether or not to parse the custom code and report unresolved
symbols in a model. This setting applies to all C charts in the model, including
library link charts.

Settings
Default: On
0 On

Enables parsing of custom code to report unresolved symbols in C charts
of your model.

™ ofr

Disables parsing of custom code.

Tips

® When you create a new model, this check box is selected by default.

® When you load models saved as version R2010a or earlier, this check box
1s selected only if the MEX compiler is 1cc. Otherwise, the check box
is not selected.

¢ This option only applies to C charts, not charts that use MATLAB as the
action language.

Command-Line Information

Parameter: SimParseCustomCode
Type: string

Value: 'on' | 'off'

Default: 'on'

1-556

Simulation Target Pane: Custom Code

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting
On

No impact
No impact
On

See Also

Including Custom C Code

Resolving Symbols in Stateflow Charts

¢ Configuration Parameters Dialog Box

Simulation Target Pane: Custom Code

1-557

1 Configuration Parameters Dialog Box

1-558

Source file

Enter code lines to appear near the top of a generated source code file.

Settings
Default: *’

Code lines appear near the top of the generated model . c source file, outside
of any function.

Command-Line Information

Parameter: SimCustomSourceCode
Type: string

Value: any C code

Default: '

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Including Custom C Code
¢ Configuration Parameters Dialog Box

® Simulation Target Pane: Custom Code

Simulation Target Pane: Custom Code

Header file
Enter code lines to appear near the top of a generated header file.

Settings
Default: *’

Code lines appear near the top of the generated model.h header file.

Tips

® When you include a custom header file, enclose the file name in double
quotes. For example, #include "sample header.h" is a valid declaration
for a custom header file.

® You can include extern declarations of variables or functions.

Command-Line Information

Parameter: SimCustomHeaderCode
Type: string

Value: any C code

Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Including Custom C Code

1-559

1 Configuration Parameters Dialog Box

¢ Configuration Parameters Dialog Box

e Simulation Target Pane: Custom Code

1-560

Simulation Target Pane: Custom Code

Initialize function

Enter code statements that execute once at the start of simulation.

Settings
Default: *’

Code appears inside the model’s initialize function in the model. c file.
Tip

e Use this code to invoke functions that allocate memory or to perform other
initializations of your custom code.

Command-Line Information

Parameter: SimCustomInitializer
Type: string

Value: any C code

Default: '

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Including Custom C Code
¢ Configuration Parameters Dialog Box

® Simulation Target Pane: Custom Code

1-561

1 Configuration Parameters Dialog Box

1-562

Terminate function

Enter code statements that execute at the end of simulation.

Settings
Default: *’

Code appears inside the model’s terminate function in the model.c file.
Tip

® Use this code to invoke functions that free memory allocated by the custom
code or to perform other cleanup tasks.

Command-Line Information

Parameter: SimCustomTerminator
Type: string

Value: any C code

Default: '

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Including Custom C Code
¢ Configuration Parameters Dialog Box

® Simulation Target Pane: Custom Code

Simulation Target Pane: Custom Code

Include directories

Specify a list of folder paths that contain files you include in the compiled
target.

Settings
Default:'"'

Enter a space-separated list of folder paths.

® Specify absolute or relative paths to the directories.

¢ Relative paths must be relative to the folder containing your model files,
not relative to the build folder.

¢ The order in which you specify the directories is the order in which they
are searched for header, source, and library files.

Note If you specify a Windows® path string containing one or more spaces,
you must enclose the string in double quotes. For example, the second
and third path strings in the Include directories entry below must be
double-quoted:

C:\Project "C:\Custom Files" "C:\Library Files"

If you set the equivalent command-line parameter SimUserIncludeDirs, each
path string containing spaces must be separately double-quoted within the
single-quoted third argument string, for example,

>> set_param('mymodel’, 'SimUserIncludeDirs’,
‘C:\Project "C:\Custom Files" "C:\Library Files"')

Command-Line Information

Parameter: SimUserIncludeDirs
Type: string

Value: any folder path

Default: ''

1-563

1 Configuration Parameters Dialog Box

1-564

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

® Including Custom C Code

¢ Configuration Parameters Dialog Box

® Simulation Target Pane: Custom Code

Simulation Target Pane: Custom Code

Source files
Specify a list of source files to compile and link into the target.

Settings
Default:''

You can separate source files with a comma, a space, or a new line.

Limitation
This parameter does not support Windows file names that contain embedded
spaces.

Tip

e The file name is sufficient if the file is in the current MATLAB folder or in
one of the include directories.

Command-Line Information

Parameter: SimUserSources
Type: string

Value: any file name
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

1-565

1 Configuration Parameters Dialog Box

See Also

¢ Including Custom C Code
¢ Configuration Parameters Dialog Box

e Simulation Target Pane: Custom Code

1-566

Simulation Target Pane: Custom Code

Libraries

Specify a list of static libraries that contain custom object code to link into

the target.

Settings
Default:'"'

Enter a space-separated list of library files.

Limitation

This parameter does not support Windows file names that contain embedded

spaces.

Tip

e The file name is sufficient if the file is in the current MATLAB folder or in

one of the include directories.

Command-Line Information

Parameter: SimUserLibraries

Type: string
Value: any library file name
Default: ''

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

1-567

1 Configuration Parameters Dialog Box

See Also

¢ Including Custom C Code
¢ Configuration Parameters Dialog Box

e Simulation Target Pane: Custom Code

1-568

Simulation Target Pane: Custom Code

Use local custom code settings (do not inherit from
main model)

Specify if a library model can use custom code settings that are unique from
the main model.

Settings
Default: Off

¥ On
Enables a library model to use custom code settings that are unique
from the main model.

I ofr
Disables a library model from using custom code settings that are
unique from the main model.

Dependency

This parameter is available only for library models that contain MATLAB
Function blocks, Stateflow charts, or Truth Table blocks. To access this
parameter, in the MATLAB Function Block Editor, select Tools > Open
Simulation Target.

Command-Line Information

Parameter: SimUselLocalCustomCode
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-569

1 Configuration Parameters Dialog Box

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

® Including Custom C Code
¢ Configuration Parameters Dialog Box

® Simulation Target Pane: Custom Code

1-570

Run on Target Hardware Pane

Run on Target Hardware Pane

_E:;i Configuration Parameters: untitled/Run on Hardware Configuration (Active) @
Target hardware selection =
Target hardware: [LEGO MINDSTORMS MXT -]
+- Optimization i
. A Host to target hardware connection
-Diagnostics
Hardware Implementat... | Connection type: IEIuetooth connection "
Model Referencing
+-Simulation Target Device name:
+- Code Generation
“Run on Target Hardware Signal monitoring and parameter tuning
Enable External mode e
Set host COM port: | Manually -
COM port number: 1
Owerrun detection
Enable overrun detection
Communication between two NXT bricks
Enable communication between two NXT bricks
Bluetooth mode: |Master -
Slave Bluetooth address: 00:16:53:0f:0c:09
4 L1} [
J oK] [Cancel ‘ [Help I I Apply

In this section...

“Run on Target Hardware Pane Overview” on page 1-574
“Target hardware” on page 1-575

“External mode transport layer” on page 1-580

“Enable External mode” on page 1-581

1-571

1 Configuration Parameters Dialog Box

1-572

In this section...

“IP address” on page 1-583

“Connection type” on page 1-584

“Device name” on page 1-585

“T'CP/IP port (1024-65535)” on page 1-586
“Enable overrun detection” on page 1-587
“Device” on page 1-588

“Package name” on page 1-589

“Digital output to set on overrun” on page 1-590
“Enable communication between two NXT bricks” on page 1-591
“Bluetooth mode” on page 1-592

“Slave Bluetooth address” on page 1-593

“Host name” on page 1-594

“User name” on page 1-595

“Password” on page 1-596

“Build directory” on page 1-597

“Set host COM port” on page 1-597

“COM port number” on page 1-598

“Analog input reference voltage” on page 1-599

“Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud
rate” on page 1-600

“IP address” on page 1-601

“MAC address” on page 1-601

“IP address” on page 1-601

“Service set identifier (SSID)” on page 1-601
“WiF1i encryption” on page 1-601

“WPA password” on page 1-602

Run on Target Hardware Pane

In this section...

“WEP key” on page 1-602
“WEP key index” on page 1-602

1-573

1 Configuration Parameters Dialog Box

Run on Target Hardware Pane Overview
Specify the options for creating and running applications on target hardware.

Configuration

1 Choose the Target hardware in the Run on Target Hardware pane.
2 Set the parameters displayed for the selected device type.

3 Apply the changes.

Tip

To open the Run on Target Hardware pane, in the Simulink Editor, select
Simulation > Model Configuration Parameters > Run on Target

Hardware.

1-574

Run on Target Hardware Pane

Target hardware
Select the type of hardware upon which to run your model.

Changing this parameter updates the Configuration Parameters dialog so it
only displays parameters that are relevant to your target hardware.

If your target hardware is supported, but not available in the Target
hardware parameter options, use Support Package Installer to install
support for your target hardware, as described in “What Is Support Package
Installer?”. After installing support for your target hardware, reopen the
Configuration Parameters dialog and select your target hardware.

Settings
Default: None

None
This setting means your model has not been configured to run on target
hardware. Choose your target hardware from the list of options.

Arduino Mega 2560

This setting displays the following configuration parameters for
Arduino® Mega 2560 hardware:

e “Set host COM port” on page 1-597

e “COM port number” on page 1-598

¢ “Enable overrun detection” on page 1-587

¢ “External mode transport layer” on page 1-580
e “Analog input reference voltage” on page 1-599

e “Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3
baud rate” on page 1-600

e “TP address” on page 1-601

e “MAC address” on page 1-601

e “TP address” on page 1-601

e “Service set identifier (SSID)” on page 1-601
¢ “WiFi encryption” on page 1-601

1-575

1 Configuration Parameters Dialog Box

e “WPA password” on page 1-602

Arduino Uno
This setting displays the following configuration parameters for Arduino
Uno hardware:

® “Set host COM port” on page 1-597
e “COM port number” on page 1-598
® “Analog input reference voltage” on page 1-599

e “Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3
baud rate” on page 1-600

e “TP address” on page 1-601

e “MAC address” on page 1-601

e “TP address” on page 1-601

® “Service set identifier (SSID)” on page 1-601
¢ “WiFi encryption” on page 1-601

e “WEP key” on page 1-602

e “WEP key index” on page 1-602

e “WPA password” on page 1-602

Arduino Nano
This setting displays the following configuration parameters for Arduino
Nano hardware:

e “COM port number” on page 1-598
e “Enable overrun detection” on page 1-587
® “Analog input reference voltage” on page 1-599

e “Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3
baud rate” on page 1-600

Arduino Due
This setting displays the following configuration parameters for Arduino
Due hardware:

® “Set host COM port” on page 1-597

1-576

Run on Target Hardware Pane

“COM port number” on page 1-598

“Enable overrun detection” on page 1-587
“External mode transport layer” on page 1-580
“Analog input reference voltage” on page 1-599

“Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3
baud rate” on page 1-600

“IP address” on page 1-601

“MAC address” on page 1-601

“IP address” on page 1-601

“Service set identifier (SSID)” on page 1-601
“WiFi encryption” on page 1-601

“WEP key” on page 1-602

“WEP key index” on page 1-602

“WPA password” on page 1-602

BeagleBoard
This setting displays the following configuration parameters for
BeagleBoard hardware:

“Enable External mode” on page 1-581
“TCP/IP port (1024-65535)” on page 1-586
“Enable overrun detection” on page 1-587
“Host name” on page 1-594

“User name” on page 1-595

“Password” on page 1-596

“Build directory” on page 1-597

Gumstix Overo
This setting displays the following configuration parameters for
Gumstix® Overo® hardware:

“Enable External mode” on page 1-581

1-577

1 Configuration Parameters Dialog Box

1-578

“TCP/IP port (1024-65535)” on page 1-586
“Enable overrun detection” on page 1-587
“Host name” on page 1-594

“User name” on page 1-595

“Password” on page 1-596

“Build directory” on page 1-597

LEGO MINDSTORMS NXT
This option display the following configuration parameters for LEGO®
MINDSTORMS® NXT hardware:

“Enable External mode” on page 1-581

“Connection type” on page 1-584

“Enable overrun detection” on page 1-587

“Enable communication between two NXT bricks” on page 1-591
“Bluetooth mode” on page 1-592

“Slave Bluetooth address” on page 1-593

“Set host COM port” on page 1-597

“COM port number” on page 1-598

PandaBoard
This setting displays the following configuration parameters for
PandaBoard hardware:

“Enable External mode” on page 1-581
“TCP/IP port (1024-65535)” on page 1-586
“Enable overrun detection” on page 1-587
“Host name” on page 1-594

“User name” on page 1-595

“Password” on page 1-596

“Build directory” on page 1-597

Run on Target Hardware Pane

Raspberry Pi

This setting displays the following configuration parameters for
Raspberry Pi™ hardware:

“Enable External mode” on page 1-581
“TCP/IP port (1024-65535)” on page 1-586
“Enable overrun detection” on page 1-587
“Host name” on page 1-594

“User name” on page 1-595

“Password” on page 1-596

“Build directory” on page 1-597

See Also

“Install Support for Arduino Hardware”

“Install Support for BeagleBoard Hardware”
“Install Support for LEGO MINDSTORMS NXT Hardware”

“Install Support for PandaBoard Hardware”

1-579

1 Configuration Parameters Dialog Box

1-580

External mode transport layer

Select the transport layer the External mode uses to communicate between
the Arduino hardware and the host computer:

e serial uses the standard serial USB connection.

e tcpip uses the Ethernet connection specified by the Ethernet shield
properties.

e wifi uses the Wi-Fi connection specified by the WiFi shield properties.

See Also

¢ “Arduino Hardware”

Run on Target Hardware Pane

Enable External mode

Enable External mode to tune and monitor a model while it runs on your
target hardware.

With External mode, changing a parameter value in the model on the

host changes the corresponding value in the model running on the target
hardware. Similarly, scopes in the model display data from the model running
on target hardware.

Enabling External mode adds a lightweight server to the model running on
the target hardware. This server increases the processing burden upon the
target hardware, which can result in an overrun condition. If you enable the
Enable overrun detection check box, and the software reports an overrun,
consider disabling External mode.

Enabling the External mode parameter makes the following
communication-related parameters visible:

¢ Set host COM port LEGO MINDSTORMS NXT hardware and Arduino
Mega 2560 hardware

e TCP/IP port (1024-65535) for BeagleBoard and PandaBoard hardware

Enabling the External mode parameter disables the Enable

communication between two NXT bricks parameter LEGO
MINDSTORMS NXT hardware.

Settings
Default: Disabled

Disabled
The model application does not support External mode.

Enabled
The model application supports External mode.

See Also

¢ “Enable overrun detection” on page 1-587

1-581

1 Configuration Parameters Dialog Box

1-582

“Set host COM port” on page 1-597

“T'CP/IP port (1024-65535)” on page 1-586

“Tune and Monitor Model Running on Arduino Mega 2560 Hardware”
“Tune and Monitor Model Running on BeagleBoard Hardware”

“Tune and Monitor Model Running on PandaBoard Hardware”

“Tune Parameters and Monitor Data in a Model Running on NXT Brick”

“Use Serial Communications with Arduino Hardware”

Run on Target Hardware Pane

IP address
The IP address of the LEGO MINDSTORMS EV3 brick.

1-583

1 Configuration Parameters Dialog Box

1-584

Connection type

Choose the connection Simulink uses to download your model from the host
computer to the NXT hardware.

Set up a USB or Bluetooth® connection before running the model on the
NXT hardware.

Note The NXT hardware always uses a Bluetooth connection for External
mode communications. The Connection type parameter does not affect
External mode communications.

Settings
Default: USB connection

USB connection
Use a USB connection to download a model to the NXT hardware.

Bluetooth connection
Use a Bluetooth connection to download a model to the NXT hardware.

See Also

¢ “Run Model on NXT Brick”
* “Set Up A Bluetooth Connection”

Run on Target Hardware Pane

Device name

This parameter appears when the Target hardware parameter is set to LEGO
MINDSTORMS NXT and the Connection type parameter is set to Bluetooth
connection.

While you are setting up a Bluetooth connection, get the name of the NXT
hardware in Windows Devices and Printers and assign it to the Device
name parameter. For example, if the Windows device name is “myNXT”,
enter myNXT for Device name parameter in the Configuration Parameters
dialog.

See Also

¢ “Run Model on NXT Brick”
e “Set Up A Bluetooth Connection”

1-585

1 Configuration Parameters Dialog Box

1-586

TCP/IP port (1024-65535)

This parameter appears when the Target hardware setting supports
External mode.

Set the value of the TCP/IP port number, from 1024 to 65535. External mode
uses this IP port for communications between the target hardware and host
computer.

Settings
Default: 17725

See Also

¢ “Enable External mode” on page 1-581
¢ “Tune and Monitor Model Running on BeagleBoard Hardware”

e “Tune and Monitor Model Running on PandaBoard Hardware”

Run on Target Hardware Pane

Enable overrun detection

Detect when a task overruns occurs in a Simulink model running on the
target hardware. Indicate when an overrun has occurred.

A task overrun occurs if the target hardware is still performing one instance
of a task when the next instance of that task is scheduled to begin.

The “Detect and Fix Task Overruns” topics listed in the following “See Also”
subtopic describe how your target hardware indicates that an overrun has
occurred.

You can fix overruns by decreasing the frequency with which tasks are
scheduled to run, and by reducing the number or complexity of the tasks
defined by your model.

If those solutions do not fix the task overrun condition, and you are using
External mode, consider disabling External mode.

Settings
Default: Disabled

Disabled
Do not detect overruns.

Enabled
Detect overruns and generate an error message when an overrun occurs.

See Also

e “Digital output to set on overrun” on page 1-590

¢ “Enable External mode” on page 1-581

® “Detect and Fix Task Overruns on Arduino Hardware”

¢ “Detect and Fix Task Overruns on BeagleBoard Hardware”
¢ “Troubleshoot Task Overruns on PandaBoard Hardware”

e “Detect and Fix Task Overruns on NXT Brick”

1-587

1 Configuration Parameters Dialog Box

1-588

Device

This parameter appears when the Target hardware parameter is set to one
of the Samsung Galaxy Android™ devices, and Show advanced settings
has been clicked.

Select the Samsung Galaxy device you are using. The list includes any
devices that are connected to your computer and turned on, including Android

emulators.

To see a device that was recently connected and turned on, click Refresh.
Refreshing the parameters update Device, Host name, and Package name.

Settings
Default: None

See Also

e “Samsung GALAXY® Android Devices”

Run on Target Hardware Pane

Package name

This parameter appears when the Target hardware parameter is set to one
of the Samsung Galaxy Android devices, and Show advanced settings
has been clicked.

Update this value with a unique name. Refer to the Android Developer
instructions the package attribute in <manifest>. The package name
uniquely identifies the application you are creating, and determines the path
names your application uses. To avoid conflicts with apps created by other
developers, use a domain name that you own as the beginning of the package
name. Reverse the order of the elements, like this: com.mydomain.myappname.

Warning Do not use com.example to publish applications (make
the app publicly available).

Settings
Default: com.example

¢ “Samsung GALAXY Android Devices”

See Also

® http://developer.android.com/guide/topics/manifest/manifest-element.html

1-589

http://developer.android.com/guide/topics/manifest/manifest-element.html

1 Configuration Parameters Dialog Box

1-590

Digital output to set on overrun

This parameter appears when the Target hardware parameter is set to
Arduino Mega 2560, Arduino Uno, and Arduino Nano and the Enable
overrun detection check box is selected.

Select the digital output pin the Arduino hardware uses to signal a task
overrun.

Do not use a pin that is assigned to another block within the model.
Settings
Default: 13

See Also

¢ “Enable overrun detection” on page 1-587

e “Detect and Fix Task Overruns on Arduino Hardware”

Run on Target Hardware Pane

Enable communication between two NXT bricks

This parameter appears when the Target hardware parameter is set to
LEGO MINDSTORMS NXT.

You can enable direct Bluetooth communication between two NXT bricks.
Enabling this parameter makes the Bluetooth mode parameter appear.

Enabling the Enable communication between two NXT bricks
parameter disables External mode for LEGO MINDSTORMS NXT hardware.

Settings
Default: Disabled

Disabled

Disable communication between two NXT bricks.

Enabled
Enable direct Bluetooth communication between two NXT bricks.

See Also

¢ “Bluetooth mode” on page 1-592

e “Slave Bluetooth address” on page 1-593

¢ “Exchange Data Between Two NXT Bricks”

¢ LEGO MINDSTORMS NXT Send via Bluetooth Connection

¢ LEGO MINDSTORMS NXT Receive via Bluetooth Connection

1-591

1 Configuration Parameters Dialog Box

1-592

Bluetooth mode

This parameter appears when the Target hardware parameter is set to
LEGO MINDSTORMS NXT.

If you enable the Enable communication between two NXT bricks
parameter, configure the Bluetooth device on one NXT brick to be a Bluetooth
master or slave.

This parameter only applies to Bluetooth communications between two NXT
bricks. It does not apply to Bluetooth communications between the host
computer and the NXT brick.

Selecting Master makes the Bluetooth slave address parameter appear.

Settings
Default: Master

Master
The Bluetooth device on the NXT brick operates as a master. Selecting
this option enables the Slave Bluetooth address parameter.

Slave
The Bluetooth device on the NXT brick operates as a slave.

See Also

¢ “Enable communication between two NXT bricks” on page 1-591
e “Slave Bluetooth address” on page 1-593

¢ “Exchange Data Between Two NXT Bricks”

¢ LEGO MINDSTORMS NXT Send via Bluetooth Connection

e LEGO MINDSTORMS NXT Receive via Bluetooth Connection

Run on Target Hardware Pane

Slave Bluetooth address

This parameter appears when the Target hardware parameter is set to
LEGO MINDSTORMS NXT and the Bluetooth mode parameter is set to Master.

Enter the address of the slave Bluetooth device on other NXT brick.

See Also

¢ “Enable communication between two NXT bricks” on page 1-591
e “Bluetooth mode” on page 1-592

¢ “Exchange Data Between Two NXT Bricks”

e LEGO MINDSTORMS NXT Send via Bluetooth Connection

e LEGO MINDSTORMS NXT Receive via Bluetooth Connection

1-593

1 Configuration Parameters Dialog Box

1-594

Host name

This parameter appears when the Target hardware requires a network
connection to load the model or application to the target hardware.

When you use the Support Package Installer to update the firmware on the
target hardware, the Support Package Installer automatically gets the value
of the IP address from the target hardware and applies it to this parameter.

If you swap boards, or change the IP address of the target hardware, get the
value of the new IP address and enter it here.

See Also

“User name” on page 1-595

“Password” on page 1-596

“Build directory” on page 1-597

“Configure Network Connection with BeagleBoard Hardware”
“Configure Network Connection with PandaBoard Hardware”
“Replace Firmware on BeagleBoard Hardware”

“Replace Firmware on PandaBoard Hardware”

“Run Model on BeagleBoard Hardware”

“Run Model on PandaBoard Hardware”

Run on Target Hardware Pane

User name

This parameter appears when the Target hardware parameter is set to
BeagleBoard or PandaBoard.

Enter the root user name for Linux® running on the BeagleBoard or
PandaBoard hardware.

When you use the Support Package Installer to update the BeagleBoard or
PandaBoard firmware, the Support Package Installer automatically applies
the value you entered there to this parameter.

Settings
BeagleBoard Default: ubuntu

PandaBoard Default: 1inaro

See Also

¢ “Host name” on page 1-594

e “Password” on page 1-596

¢ “Build directory” on page 1-597

¢ “Replace Firmware on BeagleBoard Hardware”
® “Replace Firmware on PandaBoard Hardware”
¢ “Run Model on BeagleBoard Hardware”

¢ “Run Model on PandaBoard Hardware”

1-595

1 Configuration Parameters Dialog Box

1-596

Password

This parameter appears when the Target hardware parameter is set to
BeagleBoard or PandaBoard.

Enter the root password for Linux running on the BeagleBoard or PandaBoard
hardware.

When you use the Support Package Installer to update the firmware on
the BeagleBoard or PandaBoard hardware, the Support Package Installer
automatically applies the value you entered there to this parameter.

Settings
BeagleBoard Default: temppwd

PandaBoard Default: 1inaro

See Also

e “Host name” on page 1-594

e “User name” on page 1-595

e “Build directory” on page 1-597

e “Replace Firmware on BeagleBoard Hardware”
e “Replace Firmware on PandaBoard Hardware”
¢ “Run Model on BeagleBoard Hardware”

¢ “Run Model on PandaBoard Hardware”

Run on Target Hardware Pane

Build directory

This parameter appears when the Target hardware parameter is set to
BeagleBoard or PandaBoard.

Enter the build directory for Linux running on the BeagleBoard or
PandaBoard hardware.

When you use the Support Package Installer to update the firmware on
the BeagleBoard or PandaBoard hardware, the Support Package Installer
automatically applies the value you entered there to this parameter.

Settings
BeagleBoard Default: /home/ubuntu

PandaBoard Default: /home/linaro

See Also

e “Host name” on page 1-594

e “User name” on page 1-595

e “Password” on page 1-596

e “Replace Firmware on BeagleBoard Hardware”
e “Replace Firmware on PandaBoard Hardware”
¢ “Run Model on BeagleBoard Hardware”

¢ “Run Model on PandaBoard Hardware”

Set host COM port

This parameter appears when the Target hardware parameter is set to
LEGO MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno.

Automatically detect or manually set the COM port your host computer uses
to communicate with the target hardware.

1-597

1 Configuration Parameters Dialog Box

1-598

Warning Do not connect Arduino Uno and Arduino Mega 2560

to a RS-232 serial interface, commonly found on computers and
equipment. RS-232 interfaces can use voltages greater than 5 Volts,
which can damage your Arduino hardware.

Settings
Default: Automatically

Automatically
Let the software determine which COM Port your host computer uses.

Manually
Select this option to display the COM port number parameter.

See Also

e “Configure Host COM Port Manually”
® “COM port number” on page 1-598.

e “Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud
rate” on page 1-600.

COM port number

This parameter appears when the Target hardware parameter is set to
LEGO MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno, and the Set
host COM port parameter is set to Manually.

Manually set the number of the COM Port the host computer uses to
communicate with the target hardware, and then enter it here.

Warning Do not connect Arduino Uno and Arduino Mega 2560

to a RS-232 serial interface, commonly found on computers and
equipment. RS-232 interfaces can use voltages greater than 5 Volts,
which can damage your Arduino hardware.

Settings
Default: 0

Run on Target Hardware Pane

See Also

¢ “Configure Host COM Port Manually”
® “Set host COM port” on page 1-597

® “Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud
rate” on page 1-600.

Analog input reference voltage

This parameter appears when the Target hardware parameter is set to
Arduino Mega 2560 or Arduino Uno.

Set the reference voltage used to measure inputs to the ANALOG IN pins.

Warning Only connect an external power source to AREF while this
parameter is set to External. Connecting an external power source
to AREF while this parameter is set to any other option exposes the
internal voltage references to the external voltage. This voltage
difference can damage your hardware.

Do not connect Arduino Uno and Arduino Mega 2560 to voltages
greater than 5 Volts.

Do not connect Arduino Due to voltages greater than 3.3 Volts.

Voltages greater than the specified limits can damage your Arduino
hardware.

Settings
Default: Default

Default
Use the default operating voltage of the board. For Arduino Uno and
Arduino Mega 2560 the operating voltage is 5 Volts.

Internal (1.1 V)
Valid for Arduino Mega 2560 only: Use the internal 1.1 Volt reference.

Internal (2.56 V)
Valid for Arduino Mega 2560 only: Use the internal 2.56 Volt reference.

1-599

1 Configuration Parameters Dialog Box

1-600

External
On the Arduino Uno, Arduino Nano and Arduino Mega 2560, use an
external 0-5 volt power supply connected to the AREF pin. This voltage
should match the voltage of the power supply connected to the Arduino
hardware. If your application requires low-noise measurements, use
this option with a filtered power supply.

See Also

¢ Arduino Analog Input

Serial O baud rate, Serial 1 baud rate, Serial 2 baud
rate, Serial 3 baud rate

Arduino Uno hardware has one serial port, Serial 0. Arduino Mega 2560 and
Arduino Due hardwares have four serial ports, Serial 0 through Serial 3.

Set the baud rate of the serial port on the Arduino hardware.

If you set Set host COM port to Manually, then set Serial 0 baud rate as
described in “Configure Host COM Port Manually”.

Settings
Default: 9600

300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 128000, 500000, 1000000

See Also

“Configure Host COM Port Manually”
“Set host COM port” on page 1-597

Arduino Serial Receive

Arduino Serial Transmit

Run on Target Hardware Pane

IP address
Enter the IP address of the Arduino Ethernet shield.

MAC address

Enter the machine address of the Arduino Ethernet shield.

IP address
Enter the IP address of the Arduino WiF1 shield.

Service set identifier (SSID)

Enter the SSID of your network. An SSID is a unique ID consisting of 32
characters and is used for naming wireless networks. An SSID ensures that
the data you send over the network reaches the correct destination.

WiFi encryption

The WiFi encryption that is used in the network you connect to.

Settings

Default: None

None
Select this option when you connect to a network that is not WiFi
encrypted.

WPA
Select this option when you connect to a network that uses WPA WiFi
encryption.

WEP
Select this option when you connect to a network that uses WEP WiFi
encryption.

See Also

e “WPA password” on page 1-602

1-601

1 Configuration Parameters Dialog Box

1-602

o “WEP key” on page 1-602
o “WEP key index” on page 1-602

WPA password

This parameter appears only when you select WPA option in the WiFi
encryption parameter. Enter the WPA password of the network.

WEP key

This parameter appears only when you select WEP option in the WiFi
encryption parameter. Enter the WEP key of the network.

WEP key index

This parameter appears only when you select WEP option in the WiFi
encryption parameter. Enter the WEP key index of the WEP key.

Library Browser

¢ “About the Library Browser” on page 2-2

® “Open the Library Browser” on page 2-5

e “Libraries Pane” on page 2-6

¢ “Blocks Pane” on page 2-9

® “Block Description Pane” on page 2-14

e “Search Toolbar” on page 2-15

¢ “Found Pane” on page 2-18

* “Most Frequently Used Blocks Pane” on page 2-21

e “Library Data Repository” on page 2-22

¢ “Library Browser Keyboard Shortcuts” on page 2-23

2 Library Browser

About the Library Browser

2-2

Use the Library Browser to browse and search Simulink block libraries for
blocks to use in your models. You can also select from a list of your most
frequently used blocks.

The following figure shows the Library Browser with:

¢ The Sinks library selected from the Libraries pane (left-most pane)

® The Outl block selected in the Blocks pane, which lists the blocks from the
library selected in the Libraries pane (Sinks, in this example)

® A Block Description pane for the Outl block (the block selected in the
Blocks pane), at the bottom of the Library browser.

The Library Browser has a search box for searching for blocks or libraries
whose names that contain the search term you specify.

The Most Frequently Used Blocks pane displays a list of the blocks you have
added the most often.

About the Library Browser

1 Simulink Library Browser
File Edit View Help

F 3 »| Enter search term

Libraries

ML

Library: Simulink/Sinks | Search Results: (none) I Most Frequently Used Blocks

=[P Simutink

- Commonly Used Blocks
- Continuous

- Discontinuities

- Discrete

- Logic and Bit Operations
- Lookup Tables

-~ Math Operations

- Model Verification

- Model-Wide Utilties

- Ports & Subsystems

- Signal Attributes.

- Signal Routing

- SOUTCES

- User-Defined Functions
- Additional Math & Discrete
[Aerospace Blockset

»

m

:[:] Display

Cut1

= ECH ™)

|§| Floating Scope
E -

Stop Simulation Terminator

Tc File

XY Graph

T

Block Description

Showing: Simulinki/Sinks

For details about Library Browser features, see:

¢ “Libraries Pane” on page 2-6

¢ “Blocks Pane” on page 2-9

¢ “Most Frequently Used Blocks Pane” on page 2-21

¢ “Block Description Pane” on page 2-14

e “Search Toolbar” on page 2-15

Simulink/Sinks/Outi: Provide an output port for a subsystem or model. The "Output when disabled” and ‘Initial output’
parameters only apply to conditionalty executed subsystems. When a conditionally executed subsystem is disabled, the
output is either held at its last value or set to the “Initial output'.

2-3

2 Library Browser

¢ “Found Pane” on page 2-18
For information about key tasks involving the Library Browser, see:

® “Open the Library Browser” on page 2-5
e “Populate a Model”

* “Add Blocks”

e “Add Libraries to the Library Browser”

Open the Library Browser

Open the Library Browser

When you open the Simulink software, the Library Browser opens. For
details, see “Start the Simulink Software”.

2-5

2 Library Browser

Libraries Pane

In this section...

“About the Libraries Pane” on page 2-6
“Selecting Nodes” on page 2-7
“Expanding and Collapsing Nodes” on page 2-8

“Refreshing the Tree View” on page 2-8

About the Libraries Pane

The Libraries pane allows you to select block libraries for browsing. The pane
displays a tree-structured directory (tree view) of libraries installed on your
system, each of whose nodes you can select with your mouse or keyboard.
Selecting a node displays the contents of the corresponding library in the
Blocks pane. The Libraries pane indicates the selected library via a selection
cursor that highlights the corresponding node.

Libraries Pane

Libraries

—-[Pa] Simulink
-~ Commonly Used Blocks
- Continuous
- Discontinuities
- Discrete
-~ Logic and Bit Operations
-~ Lookup Tables
-~ Math Operationz
- Model Verification
- ModelWide Utilties —
-~ Portg & Subsystems
- Signal Attributes
- Signal Routing
- Sinks
- User-Defined Functions
+- Additiocnal Math & Discrete

+ -- Aerospace Blockset
+ -- Communications System Toolbox
4} - Computer Vigion System Toolbox

L3

m

Selecting Nodes

You can use your keyboard or your mouse to select a node in the tree view.
To select a node with the mouse, first use the Libraries pane’s scroll bars, if
necessary, to move the node into view. Then click the node. To select a node
with the keyboard, use the keyboard’s Up or Down arrow key to move the
tree’s node selection cursor to the desired node.

Note Selecting a node can cause the Library Browser to update its library
data repository (see “Library Data Repository” on page 2-22). In this case, it
displays an advisory dialog box while the update is in process.

2-7

2 Library Browser

Expanding and Collapsing Nodes

To facilitate navigation of large directory trees, the Libraries pane displays
libraries containing sublibraries as expandable nodes, each containing a
toggle button labeled + or -, depending on whether the node is collapsed or
expanded. Clicking the button expands or collapses its node to show or hide
the corresponding parent library’s children. You can also expand or collapse
the currently selected node by pressing the Right or Left arrow keys on
your keyboard, respectively.

Refreshing the Tree View

To refresh the tree view displayed in the Libraries pane, select Refresh Tree
View from the Library Browser’s View menu. The Library Browser adds or
removes any libraries from the tree view that have been added or deleted,
respectively, from the MATLAB path since the view was last updated.

Blocks Pane

Blocks Pane

In this section...
“About the Blocks Pane” on page 2-9

“Choosing the Blocks Pane’s Layout” on page 2-10

“Setting Icon Size” on page 2-11

“Selecting Blocks” on page 2-12

“Creating an Instance of a Library Block in a Model” on page 2-12
“Displaying a Library Block’s Parameters” on page 2-12
“Displaying Help for a Library Block” on page 2-12

“Displaying the Contents of a Sublibrary” on page 2-12

“Displaying a Block or Sublibrary’s Parent” on page 2-13

About the Blocks Pane

The Blocks pane in the Library Browser displays the contents of the library
selected in the Libraries pane (see “Libraries Pane” on page 2-6).

Library Browser

2-10

Simulink Library Browser EI

File Edit View Help

F 3 » Enter search term ~ M s

Libraries Library: Simulink/Commonty Used Blocks Search Resu}ts:. { i'
=[P simufink -
® Commonly Used Blocks F } Bus Creator .g Bus Selector
-~ Continuous
- Discontinuities
. Constant Comwer Lae Ty[)s
- Discrete ‘Conversion
Logic and Bit Operations
Lookup Tables Delay i Dernuic
- Math Operations
-~ Model Verification . .
- ModekWide Utilties =)n F'S‘“‘E'T”“E .D> Gein
24 ntegrator
- Ports & Subsystems
-~ Signal Attributes
-~ Signal Routing @ Ground In1
- Sinks
- Sources. Integrator AND Logical
- User-Defined Functions Opeszior
[+]- Additional Math & Discrete
-__EAeruspace Blockset * Muzx Outl
E‘ Communications System Toolbox [
E‘ Computer Vision System Toolbox S ' Relstional
(%] Control System Toolbox Operstor
(%] DSP System Toolbox
El Data Acquisition Toolbox ' Saturation ’I?l Scope
[Pl Embedded Coder
E‘ Fuzzy Logic Toolbox Subsystem)@ Sum
[P Gauges Blockset
HDL Verifier
ol S -
El Image Acguisition Toolbox
El Instrument Control Toolbox
(Pal Mode! Predictive Control Toolb Voot
Wodel Predictive Control Toolbox i
El Neural Network Toolbox
Hlir=1 2

Showing: Simulink/Commonly Used Blocks

You can use the Blocks pane to browse the contents of the selected library, to
view a library block’s parameters or help, and to create instances of library
blocks in models.

Choosing the Blocks Pane’s Layout

The Library Browser can display blocks in either a list (single-column) layout
or a screen-saving grid layout. To choose a layout, select List or Grid from
the Library Browser’s View > Layout menu.

Blocks Pane

Library: Sirmulink | Search Results: [none) I Libramy: Sirmulink I Search Results: [hone) I
rFY rFY
Skl Commonly Uzed Blocks E":
Lk‘g Continuous E:;ndmacig%l. Continuous
"'./\4-\) -
Dizcontinuities
l& Discrete Discontinu- Discrete
ities
|a. =’=| |L|
k1| L =
List Layout Grid Layout

Tip

Setting the Library Browser’s layout option to grid and its icon size to compact
(see “Setting Icon Size” on page 2-11) results in the most compact display of a
library’s contents in the Blocks pane.

Setting Icon Size

The Library Browser’s View > Icon Size menu allows you to select any

of four icon sizes: Compact (Ctrl+1), Small (Ctrl+2), Medium (Ctrl+3),
Large (Ctrl+4). The compact option eliminates the use of rectangles to
distinguish block icons from library icons and thus takes up the least amount
of space. Use this option if you want to maximize the number of icons visible
in the Blocks pane.

2-11

2 Library Browser

2-12

Selecting Blocks

Many Blocks pane procedures require you to select a block displayed in the
pane. To select a block, click it with the mouse. The Library Browser moves
the block selection cursor to the selected block.

Creating an Instance of a Library Block in a Model

To create an instance of a library block in an existing model, select the block
in the Blocks pane and drag it into the model’s window.

To create an instance of a library block in a new model, select the block in the
Blocks pane and then select Add to a new model from the library block’s
context menu or Add Selected Block to a New Model from the Library
Browser’s Edit menu.

Displaying a Library Block’s Parameters

To display a library block’s parameter dialog box, double-click the block in the
Blocks pane or select Block parameter from the block’s context menu.

Note The dialog box is disabled to prevent you from using it to change a
library block’s parameters.

Displaying Help for a Library Block

To display help for a library block, select the block and then select Help from
the block’s context menu or from the Library Browser’s Help menu.

Displaying the Contents of a Sublibrary

To display the contents of a sublibrary appearing in the Blocks pane,
double-click the library. The library’s contents replaces the parent’s contents
in the Blocks pane.

Blocks Pane

Displaying a Block or Sublibrary’s Parent

To display the parent of an item (block or library) displayed in the Blocks
pane, select Go to parent from the item’s context menu. The contents of the
parent replaces the contents of the child in the Blocks pane.

2-13

2 Library Browser

Block Description Pane
This pane displays a description of the block selected in the Blocks pane. The
text of the description is the same as the text of the description that appears

on the block’s parameter dialog box.

To hide this pane, deselect Show block descriptions on the Library
Browser’s View menu.

2-14

Search Toolbar

Search Toolbar

In this section...

“About the Search Toolbar” on page 2-15

“Using the Search Toolbar to Find Blocks” on page 2-15
“Search Text Combo Box” on page 2-16

“Search Options Menu” on page 2-16

“Search Button” on page 2-17

About the Search Toolbar

The Library Browser’s Search toolbar allows you to search the block libraries
installed on your system for blocks whose names contain or match a text
string that you specify. The Search toolbar displays the blocks it finds in the
Found pane of the Library Browser. You can use the Found pane to view a
found block’s help or parameters or create an instance of the block in a model
(see “Found Pane” on page 2-18 for more information).

I =19 |
7

Search Text Search Button Search Options
Combo Box Menu Button

Using the Search Toolbar to Find Blocks

To find blocks whose names contain or match a specified text string:

1 Enter the string in the toolbar search text combo box (see “Search Text
Combo Box” on page 2-16).

2 Use the toolbar search options menu to specify the search options you want
to use, e.g., match whole words (see “Search Options Menu” on page 2-16).

3 Select the toolbar Search button to start the search.

2-15

2 Library Browser

2-16

The Library Browser searches the libraries installed on your system whose
names contain or match the search string you specified, depending on the
options you specified. It displays the results of the search in its Found pane
(see “Found Pane” on page 2-18).

Search Text Combo Box

The search text combo box allows you to specify the text string to be used to
search the block libraries on your system. The combo box consists of an edit
field and a drop-down list of search strings that you previously entered in the
current or previous sessions. To specify a string, enter the string in the edit
field or choose a string from the drop-down list.

Search text Pulldown list of previous
edit field search text entries

Search Options Menu

The Search Options menu allows you to specify various search options.
To display the menu, select the search options menu button on the Search
toolbar.

Regular expression

v Match case

v Match whole word

Search Toolbar

Regular Expression

Treat search text as a MATLAB regular expression (see “Regular
Expressions”).

Match Case

Consider case when matching search text against block names.

Match Whole Word

Allow a match only if the search string matches a word, i.e., text set off by
white space, in a block’s name.

Search Button

Selecting this button initiates a search of the block libraries on your system,
using the text string and search options specified in the toolbar’s search text
combo box (see “Search Text Combo Box” on page 2-16) and search options
menu (see “Search Options Menu” on page 2-16), respectively.

2-17

2 Library Browser

2-18

Found Pane

In this section...

“About the Found Pane” on page 2-18
“Selecting a Found Block in Library View” on page 2-19

“Displaying a Found Block’s Path” on page 2-20

About the Found Pane

The Found pane allows you to view and select blocks found by the Library
Browser’s Search toolbar. The pane displays the blocks found by the tool
grouped by library. A banner at the top of each group displays the name of
the top-level library containing the found blocks, the number of blocks found
in the library, and a button that allows you to hide or display the search
results for the library.

Found Pane

Library Banner

AN

Number of
blocks found

N\
JJD = = J_Ilactuatcur M =
Libraries v Berospace Blockset k
EIE Simulink - \&t + R
= Commonly zed Blocks Aerozpace Block 3 @"
- Zontinuous
- Digcontinuities E-'? Far

= Dizcrete

- Logic and Bt Cperations
- Lookup Tahles

- Math Operations
~hodel Yerification

- Model-Wide Litilties
-Ports & Subsystems

- zignal Attributes

- Signal Routing

- Sinks

~ ZOUFCES

[

'EI Second Order LinearActuatar

E Second Order Nonlinear Actuato

Simscape

18@’

Simulink Responze Optimization

1@

M

Click to hide
or show blocks
found in this
library.

You can use the Found pane to perform many of the same tasks you can
perform with the Blocks pane, including creating instances of found blocks

in models and other libraries, displaying a found block’s parameters, and
displaying help for a found block. The procedures for these tasks are the same
as for the Blocks pane (see “Blocks Pane” on page 2-9 for more information).

Selecting a Found Block in Library View

To select a found block in the Blocks pane, select the block in the Found pane
and then select Select in library view from the block’s context menu or
enter Ctrl+R. This brings the Blocks pane forward in the Library Browser
with the found block in view and selected.

2-19

2 Library Browser

Displaying a Found Block’s Path

To display the path of a found block, move the cursor over the block. The
block’s path appears in a tooltip.

virmation Support Lilties

g Actuators
X

I:Jﬂeru:lspan:e E-|EIEkSEt."'.l'1".E1J_,Ia1J:IrSI

E Second Order Nonlinear Actuata

Simzcape 18 @

Simulink Responze Optimization 1 @

FIC tuning with actuatar constrai

2-20

Most Frequently Used Blocks Pane

Most Frequently Used Blocks Pane

Open the Most Frequently Used Blocks pane from the third tab in the Library
Browser.

Simulink Library Browser =

File Edit View Help
E]., ¥ | »»| Enter search term - “ @{&

Libraries SimulinkiCommonly Used Blocks | Search Results: (none) Most Frequently Used Blocks "3_*
=% simuink - -

- Commonly Used Blocks ‘ »{>> Gain D Constant =
|

-~ Continuous

- Discontinuities

- Discrete

L ogic and Bit Operations
- | ookup Tables

- [ath Operations Outt)|§| Scope
- Model Verification

- Model-WWide Utilities =
- Ports & Subsystems

- Signal Attributes

- Signal Routing

- Sinks

- SOUTCES:

- User-Defined Functions

|- Additional Math & Discrete

Aerospace Blockset

Communications System Toolbox

Computer Vigion System Toolbox

Control System Toolbox @ = E::::tim
DSP System Toolbox

-[#1] Nata Acnuisitinn Toolhox
Showing: Most Frequently Used Blocks

m

.

B Sine Wave

For details, see “Selecting Your Frequently Used Blocks From the Library
Browser”.

2-21

2 Library Browser

Library Data Repository

To allow you to browse and search libraries without first loading them, the
Library Browser maintains a repository of data about each library installed on
your system. The data includes block paths and icons. The Library Browser
updates the repository when you select a library whose contents have changed
since the last time you selected the library.

2-22

Library Browser Keyboard Shortcuts

Library Browser Keyboard Shortcuts

Task Shortcut

Select Libraries or Blocks Tab
panes or tools on the
Search toolbar

Open a model Ctrl+O

Move node selection down Down arrow
in the Libraries pane tree
view

Move node selection up in | Up arrow
the Libraries pane tree view

Expand a node in the Right arrow
Libraries pane tree view

Collapse a node in the Left arrow
Libraries pane tree view

Refresh Tree View pane F5

Layout (List View pane) Ctrl+L

Layout (Grid View pane) Ctrl+G

Select a block found with Ctrl+R
the search tool in the Blocks
pane

Insert the selected block in | Ctrl+I
a new model

Increase the Library Ctrl++
Browser font size

Decrease the Library Ctrl+-
Browser font size

Use compact block icons Ctrl+1
Use small block icons Ctrl+2
Use medium block icons Ctrl+3
Use large block icons Ctrl+4

2-23

2 Library Browser

Find a block Ctrl+F
Close Ctrl+W

2-24

Signal Properties Dialog
Box

e “Signal Properties Dialog Box Overview” on page 3-2

e “Signal Properties Controls” on page 3-4

* “Logging and Accessibility Options” on page 3-6

e “Simulink® Coder™ Options” on page 3-8

e “Data Transfer Options for Concurrent Execution” on page 3-9

* “Documentation Options” on page 3-11

3 Signal Properties Dialog Box

3-2

Signal Properties Dialog Box Overview

The Signal Properties dialog box lets you display and edit signal properties.
To display the dialog box, either

® Select the line that represents the signal whose properties you want to set
and then choose Signal Properties from the signal’s context menu or
from the Simulink Edit menu

or

® Select a block that outputs or inputs the signal and from the block’s
context menu, select Signals & Ports and then either Input Port Signal
Properties or Output Port Signal Properties, then select the port to
which the signal is connected from the resulting menu.

The Signal Properties dialog box appears.

%] signal Properties: @

Signal name:

Signal name must resolve to Simulink signal object

[”] Show propagated signals

Logging and accessibility | Code Generation Documentation

[7] Log signal data [Test point

Logging name

Use signal name

Data
Limit data points to last: | 5000

Decimation: 2

[OK H Cancel H Help I Apply

The dialog box includes the following controls.

e “Signal Properties Controls” on page 3-4

Signal Properties Dialog Box Overview

“Logging and Accessibility Options” on page 3-6
“Simulink® Coder™ Options” on page 3-8
“Data Transfer Options for Concurrent Execution” on page 3-9

“Documentation Options” on page 3-11

3-3

3 Signal Properties Dialog Box

Signal Properties Controls

Signal name

Name of signal.

Signal name must resolve to Simulink signal object

Specifies that either the base MATLAB workspace or the model workspace
must contain a Simulink.Signal object with the same name as this signal.
Simulink software displays an error message if it cannot find such an object
when you update or simulate the model containing this signal.

Note Simulink.Signal objects in the model workspace must have their
storage class set to Auto. See “Model Workspaces” for more information.

When Signal name must resolve to Simulink signal object is enabled, a
signal resolution icon appears by default to the left of any label on the signal.
The icon looks like this:

£

See “Signal to Object Resolution Indicator” for more information.

Show propagated signals

Note This option is available only for signals that originate from blocks that
support signal label propagation. For a list of the blocks, see “Blocks That
Support Signal Label Propagation”.

Enabling this parameter causes Simulink to create a propagated signal label.

For example, in the following model, the output signal from the Subsystem
block is configured for signal label propagation. The propagated signal label

Signal Properties Controls

(<const>) is based on the name of the upstream output signal of the Constant
block (const).

1 I Ini Outl b 1
oonst <oonsts “‘;

Constant Sutsystem Zain

For more information, see “Signal Label Propagation”.

3-5

3 Signal Properties Dialog Box

Logging and Accessibility Options

Select the Logging and accessibility tab on the Signal Properties
dialog box to display controls that enable you to specify signal logging and
accessibility options for this signal.

Logging and accessibility Code Generation Documentation

[] Log signal data [Test point
Logging name

Use signal name

Data
Limit data points to last: 5000

Decimation: 2

Log signal data

Select this option to cause Simulink software to save this signal’s values to
the MATLAB workspace during simulation. See “Export Signal Data Using
Signal Logging” for details.

Test point

Select this option to designate this signal as a test point. See “Test Points” for
details.

Logging name

This pair of controls, consisting of a list box and an edit field, specifies the
name associated with logged signal data.

Logging and Accessibility Options

Logging name

Use signal name

Simulink software uses the signal’s signal name as its logging name by
default. To specify a custom logging name, select Custom from the list box and
enter the custom name in the adjacent edit field.

Data

This group of controls enables you to limit the amount of data that Simulink
software logs for this signal.

Data
[C] Limit data points to last: | 5000

[] Decimation: .

The options are as follows.

Limit data points to last
Discard all but the last N data points where N is the number entered in the
adjacent edit field.

Decimation

Log every Nth data point where N is the number entered in the adjacent edit
field. For example, suppose that your model uses a fixed-step solver with a
step size of 0.1 s. if you select this option and accept the default decimation
value (2), Simulink software records data points for this signal at times 0.0,
0.2, 0.4, etc.

3 Signal Properties Dialog Box

Simulink Coder Options

The following controls set properties used by Simulink Coder to generate
code from the model. You can ignore them if you are not going to generate
code from the model.

Package
Select a package that defines the custom storage class you want to apply. The
default value, - - -None- - -, sets internal storage class attributes instead of

creating an embedded signal object.

You can select either the built-in Simulink or mpt package or another
package. Click Refresh to load any other available packages, including
user-defined packages, on the MATLAB path. For more information, see
“Custom Storage Classes Using Embedded Signal Objects”

Storage class

Select the storage class of this signal from the list. See “Interface Signals to
External Code”, “Interface States to External Code”, and “Storage Classes for
Data Store Memory Blocks” for information on how to use the listed options.

Storage type qualifier

Enter a storage type qualifier for this signal. For more information, see
“Interface Signals to External Code”, “Interface States to External Code”, and
“Storage Classes for Data Store Memory Blocks”.

Data Transfer Options for Concurrent Execution

Data Transfer Options for Concurrent Execution

This tab displays the data transfer options for configuring models for targets
with multicore processors. To enable this tab, in the Model Explorer for

the model, right-click Configuration, then select the Show Concurrent
Execution option.

In this section...

“Specify data transfer settings” on page 3-9
“Data transfer handling option” on page 3-9
“Extrapolation method (continuous-time signals)” on page 3-9

“Initial condition” on page 3-9

Specify data transfer settings

Enable custom data transfer settings. For more information, see “Configuring
Data Transfer Communications”.

Data transfer handling option

Select a data transfer handling option. For more information, see “Configuring
Data Transfer Communications”.

Extrapolation method (continuous-time signals)

Select a data transfer extrapolation method. For more information, see
“Configuring Data Transfer Communications”.

Initial condition

For discrete signals, this parameter specifies the initial input on the reader
side of the data transfer. It applies for data transfer types Ensure Data
Integrity Only and Ensure deterministic transfer (maximum delay).
Simulink does not allow this value to be Inf or NaN.

For continuous signals, the extrapolation method of the initial input on the
reader side of the data transfer uses this parameter. It applies for data

3 Signal Properties Dialog Box

transfer types Ensure Data Integrity Only and Ensure deterministic

transfer (maximum delay). Simulink does not allow this value to be Inf or
NaN.

For more information, see “Configuring Data Transfer Communications”.

3-10

Documentation Options

Documentation Options

Description
Enter a description of the signal in this field.

Document link

Enter a MATLAB expression in the field that displays documentation for the
signal. To display the documentation, click “Document Link.” For example,
entering the expression

web(['file:///' which('foo_signal.html')])

in the field causes MATLAB software’s default Web browser to display
foo_signal.html when you click the field’s label.

3-11

3 Signal Properties Dialog Box

3-12

Simulink Preferences

Window

e “Main Pane” on page 4-2

e “Display Defaults for New Models Pane” on page 4-27
e “Font Defaults for New Models Pane” on page 4-34

e “KEditor Defaults Pane” on page 4-35

e “Data Management Defaults Pane” on page 4-39

e “Configuration Defaults Pane” on page 4-41

4 Simulink® Preferences Window

4-2

Main Pane

Pﬁ Simulink Preferences

(= |[E s

a b} Simulink Preferences
Display Defaults for New Models
ﬂ Font Defaults for New Models
Editor Defaults
b} Data Management Defaults
4 @ Configuration Defaults
@ Solver
@ Data Import/Export
@ Optimization
@ Diagnostics
@ Hardware Implementation
@ Model Referencing
@ Simulation Target
@ Code Generation
@ HDL Code Generation

Simulink Pref ces

These options affect the behavior of all Simulink models
Model File Change Motification
Motify if model has changed on disk when:
Updating or simulating the model

Action: [Warning -]

First editing the model
Saving the model

Autosave Options

Sawve before updating or simulating the model
Sawve backup when overwriting a file created in an older version of Simulink

Warn when opening Model blocks with Normal Mode Visibility set to off
[Notify when loading an old model

[] Do not load models created with a newer version of Simulink

[T callback tracing

Open the sample time legend whenever the sample time display is changed

I
I

File generation control
Simulation cache folder:

Code generation folder:

Background Color Mode

Print: [White -]

Export: [Mabch Canvas Color -]

Clipboard: [Mahch Canvas Color -]
File format for new models and libraries: |slkx -]

MATLAB Preferences

)

In this section...

“Simulink Preferences Window Overview” on page 4-3

“Model File Change Notification” on page 4-6

“Updating or simulating the model” on page 4-7

Main Pane

In this section...

“Action” on page 4-8

“First editing the model” on page 4-10

“Saving the model” on page 4-11

“Autosave” on page 4-12

“Save before updating or simulating the model” on page 4-13

“Save backup when overwriting a file created in an older version of
Simulink” on page 4-15

“Warn when opening Model blocks with Normal Mode Visibility set to off”
on page 4-16

“Notify when loading an old model” on page 4-17
“Do not load models created with a newer version of Simulink” on page 4-18
“Callback tracing” on page 4-19

“Open the sample time legend whenever sample time display is changed”
on page 4-20

“File generation control” on page 4-21
“Simulation cache folder” on page 4-22
“Code generation folder” on page 4-23
“Print” on page 4-24

“Export” on page 4-24

“Clipboard” on page 4-25

“File format for new models and libraries” on page 4-26

Simulink Preferences Window Overview
The Simulink Preferences window comprises the following panes:

¢ General Preferences (root level)

Set preferences for file change, autosave, version notifications, and other
behaviors relating to model files

4 Simulink® Preferences Window

¢ Display Defaults for New Models

Configure display options for the Model Browser, block connection lines
and port data types.

® Font Defaults for New Models
Configure font options for blocks, lines and annotations.
¢ Editor Defaults
Configure the Simulink Editor.
® Data Management Defaults
Configure for exporting variables to MATLAB scripts.
¢ Configuration Defaults
Edit the template Configuration Parameters to be used as defaults for

new models.

Click items in the tree to select panes.

Configuration

1 On the root level pane, select the check boxes to configure preferences.
2 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

Your settings affect the behavior of all Simulink models, including those
currently open, and all subsequent models. Your preference settings are
preserved for the next time you use the software.

See Also

¢ “Main Pane” on page 4-2

® Model File Change Notification

e “Display Defaults for New Models Pane” on page 4-27
e “Font Defaults for New Models Pane” on page 4-34

Main Pane

¢ “Data Management Defaults Pane” on page 4-39

e “Configuration Defaults Pane” on page 4-41

4 Simulink® Preferences Window

Model File Change Notification

Use these preferences to specify notifications if the model has changed on
disk when you update, simulate, edit or save the model. When updating
or simulating, you can choose the action to take: warn, error, reload if
unmodified, or show a dialog box where you can choose to reload or ignore.
For more information, see Model File Change Notification.

The frame contains these controls:

e “Updating or simulating the model” on page 4-7
e “Action” on page 4-8

¢ “First editing the model” on page 4-10

* “Saving the model” on page 4-11

Main Pane

Updating or simulating the model

Specify whether to notify if the model has changed on disk when updating or
simulating the model.

Settings
Default: On

¥ On
Notify if the model has changed on disk when updating or simulating
the model. Select the action to take in the Action list.

I off
Do not notify if the model has changed on disk when updating or
simulating the model.

Tip
To programmatically check whether the model has changed on disk since it
was loaded, use the function s1IsFileChangedOnDisk.

Dependency

This parameter enables Action.

Command-Line Information

Parameter: MDLFileChangedOnDiskChecks
Type: struct, field name: CheckWhenUpdating
Value: true | false | 1 | 0

Default: true

See Also
Model File Change Notification

4-7

4 Simulink® Preferences Window

Action

Select what action to take if the file has changed on disk since it was loaded.

Settings
Default: Warning

Warning
Displays a warning in MATLAB command window

Error
Displays an error, at the MATLAB command window if simulating from
the command line, or if simulating from a menu item, in the Simulation
Diagnostics window.

Reload model (if unmodified)
Reloads if the model is unmodified. If the model is modified, you see
the prompt dialog.

Show prompt dialog
Shows prompt dialog. In the dialog, you can choose to close and reload,
or ignore the changes.

Tip
To programmatically check whether the model has changed on disk since it
was loaded, use the function sllsFileChangedOnDisk.

Dependencies

This parameter is enabled by the parameter Updating or simulating the
model.

Command-Line Information

Parameter: Md1FileChangedOnDiskHandling

Type: string

Value: 'Warning' | 'Error' | 'Reload model (if unmodified)' |
"Show prompt dialog'

Default: 'Warning'

Main Pane

See Also
Model File Change Notification

4-9

4 Simulink® Preferences Window

4-10

First editing the model

Specify whether to notify if the file has changed on disk when editing the
model.

Settings
Default: On

¥ On
Displays a warning if the file has changed on disk when you modify
the block diagram. Any graphical operation that modifies the block
diagram (e.g., adding a block) causes a warning dialog to appear. Any
command-line operation that causes the block diagram to be modified
(e.g., a call to set_param) will result in a warning like this at the
command line:

Warning: Block diagram 'mymodel' is being edited but file has
changed on disk since it was loaded. You should close and
reload the block diagram.

™ ofr

Do not check for changes on disk when first editing the model.

Tip
To programmatically check whether the model has changed on disk since it
was loaded, use the function sllsFileChangedOnDisk.

Command-Line Information

Parameter: MDLFileChangedOnDiskChecks
Type: struct, field name: CheckWhenEditing
Value: true | false | 1 | 0

Default: true

See Also
Model File Change Notification

Main Pane

Saving the model

Specify whether to notify if the file has changed on disk when saving the
model.

Settings
Default: On

¥ On
Notify if the file has changed on disk when you save the model.

® The save_system function displays an error, unless the
OverwriteIfChangedOnDisk option is used.

¢ Saving the model by using the menu (File > Save) or a keyboard
shortcut causes a dialog to be shown. In the dialog, you can choose to
overwrite, save with a new name, or cancel the operation.

™ ofr

Do not check for changes on disk when saving the model.

Tip
To programmatically check whether the model has changed on disk since it
was loaded, use the function s1IsFileChangedOnDisk.

Command-Line Information

Parameter: MDLFileChangedOnDiskChecks
Type: struct, field name: CheckWhenSaving
Value: true | false | 1 | 0

Default: true

See Also
Model File Change Notification

4-11

4 Simulink® Preferences Window

4-12

Autosave

Use the Autosave preferences to specify whether to automatically save a

backup copy of the model before updating or simulating, or when overwriting
with a newer version of Simulink.

For more information, see these controls:

® “Save before updating or simulating the model” on page 4-13

® “Save backup when overwriting a file created in an older version of
Simulink” on page 4-15

Main Pane

Save before updating or simulating the model

Specify whether to automatically save a backup copy of the model before
updating or simulating.

Settings
Default: On

¥ On
If the model has unsaved changes, automatically save a backup copy

of the model before updating or simulating. This autosave copy can be
useful for crash recovery.

The copy is saved in the same directory as the model, with the name
MyModel.slx.autosave or MyModel .md1l.autosave.

™ off

Do not automatically save a copy before updating or simulating.

Tips

¢ If you open or load a model that has a more recent autosave copy available,
then after the model loads, a dialog box appears to prompt you whether to
restore, ignore, or discard the autosave copy. If there are multiple models
involved, then the following nonmodal Model Recovery dialog appears.

E]Hu:l:lp.c:uvery 5'
L 9 wave been automatically saved more recently than the versions thak you are trying to load,

¥ Keep a copy of original model file, (As <name> mdl.original.)

Restore Delete Autosave Ignore Model Path Model Last Modfied Autosave Created
Restore il | Deletel | tgnorest |
¥ i I modell H:\DocumentsiSmaltests 19-Dec-2007 14:09:55 19-Dec-2007 14:15:24
B W I model2 H:\Documents\Smaltests 07-Dec-2007 10:19:02 19-Dec-2007 14:15:31
| n [modeld H:\DocumentsiSmaltests 17-Dec-2007 12:47:49 19-Dec-2007 14:15:27

ok | cace | ue |

For each model in the list, you can select a check box to specify whether to
Restore, Delete Autosave, or Ignore. Or you can click the Restore All,
Delete All or Ignore All button to select that option for all listed models.

4-13

4 Simulink® Preferences Window

Option Result

Restore Overwrite the original model file with the autosave
copy, and delete the autosave copy. Simulink will
close the model and reload from the restored file.
If you select the check box to Keep a copy of
original model file, you can save copies of the
original model files named MyModel.slx.original
or MyModel .mdl.original.

Delete Autosave Delete the autosave copy.

Ignore Leave the model and the autosave copy untouched.
This setting is the default. The next time you
open the model, the Model Recovery dialog will
reappear and you can choose to restore or delete
autosave files.

If you deliberately close a modified model, any autosave copy is deleted.

Autosave does not occur for models that are part of the MATLAB
installation, so you will not create autosave copies of those models.

Autosave does not occur if the autosave file or location is read only.

Autosave does not occur in Parallel Computing Toolbox™ workers.

Caution If a segmentation violation occurred, then the last autosave file for
the model reflects the state of the autosave data prior to the segmentation
violation. Because Simulink models might be corrupted by a segmentation
violation, Simulink does not autosave a model after a segmentation violation
occurs.

Command-Line Information

Parameter: AutoSaveOptions

Type: struct, field name: SaveOnModelUpdate
Value: true | false | 1| 0

Default: true

4-14

Main Pane

Save backup when overwriting a file created in an
older version of Simulink

Specify whether to automatically save a backup copy of the model when
overwriting with a newer version of Simulink.

Settings
Default: On

¥ on
If saving the model with a newer version of Simulink, automatically
save a backup copy of the model. This backup copy can be useful for
recovering the original file in case of accidental overwriting with a
newer version.

The backup copy is saved in the same directory as the model, with the
name MyModel .slx.Version or MyModel .md1l.Version, where Version
is the last version that saved the model, e.g., R2010a.

I off
Do not automatically save a backup copy when overwriting a model
with a newer version of Simulink.

Tips
To recover the original model, rename the backup copy to MyModel .md1l by
deleting the Version suffix.

Command-Line Information

Parameter: AutoSaveOptions

Type: struct, field name: SaveBackupOnVersionUpgrade
Value: true | false | 1 | 0

Default: true

4-15

4 Simulink® Preferences Window

4-16

Warn when opening Model blocks with Normal
Mode Visibility set to off

Show a warning when you open a model from Model blocks that have Normal
Mode Visibility set to off.

All instances of a Normal mode referenced model are part of the simulation.
However, Simulink displays only one instance in a model window; that
instance is determined by the Normal Mode Visibility setting. Normal mode
visibility includes the display of Scope blocks and data port values. When you
open a model from a Model block that has Normal Mode Visibility set to off,
the referenced model shows data from the instance of that model has Normal
Mode Visibility set to on.

Settings
Default: On

¥ On
After simulation, Simulink displays a warning if you try to open a
referenced model from a Model block that has Normal Mode Visibility
set to off. Simulink does not open the instance referenced by that Model
block, but instead opens the instance that has Normal Mode Visibility
set to on. The instance that has Normal Mode Visibility set to on has
different input data sources than the instance referenced by the Model
block that you opened.

I o
No warning displayed if, after simulation, you try to open a referenced
model from a Model block that has Normal Mode Visibility set to off.

Tips

¢ The warning box that Simulink displays includes an option to suppress
the display of the warning in the future. If you enable that option, this
preference is set to off. Use this preference to resume the display of that
warning.

® For more information, see “Normal Mode Visibility”.

Main Pane

Notify when loading an old model

Specify whether to notify when loading a model last saved in a older version
of Simulink software.

Settings
Default: Off

¥ On
Print a message in the command window when loading a model last
saved in an old version of Simulink software.

™ off

No notification when loading old models.

Tips
® Run slupdate('modelname') to convert the block diagram to the format of
the current version of Simulink software.

¢ For advice on upgrading a model to the current version of Simulink
software, see “Consult the Model Advisor”.

Command-Line Information

Parameter: NotifyIfLoadOldModel
Type: string

Value: 'on' | 'off'

Default: off

4-17

4 Simulink® Preferences Window

4-18

Do not load models created with a newer version
of Simulink

Specify whether to load a model last saved in a newer version of Simulink
software.

Settings
Default: Off

M On
Do not load any model last saved in a newer version of Simulink
software, and print an error message in the command window.

I off
Load models last saved in a newer version of Simulink software, and
print a warning message in the command window.

Tip

If possible, use the Save As command to convert the block diagram to the
format of the desired version of Simulink software. The Save As command
allows you to save a model created with the latest version of the Simulink
software in formats used by earlier versions. See “Export a Model to a
Previous Simulink Version”.

Command-Line Information

Parameter: ErrorIfLoadNewModel
Type: string

Value: 'on' | 'off!'

Default: off

Main Pane

Callback tracing

Specify whether to display the model callbacks that Simulink software
invokes when simulating a model.

Settings
Default: Off

¥ On
Display the model callbacks in the MATLAB command window as they
are invoked.

Callback tracing allows you to determine the callbacks the software
invokes, and in what order, when you open or simulate a model.

I off
Do not display model callbacks.

Command-Line Information

Parameter: CallbackTracing
Type: string

Value: 'on' | 'off!'
Default: 'off"

4-19

4 Simulink® Preferences Window

4-20

Open the sample time legend whenever sample time
display is changed

Specify whether to display the Sample Time Legend whenever Sample Time
Display is changed.

Settings
Default: On

¥ On
Display the Sample Time Legend whenever you change Sample Time
Display by selecting Colors, Annotations, or All from the Sample Time
Display submenu. The model diagram is updated and the legend opens.

I off
Do not display the Sample Time Legend whenever Sample Time Display
is changed.

Command-Line Information

Parameter: OpenLegendWhenChangingSampleTimeDisplay
Type: string

Value: 'on' | 'off!'

Default: 'on'

Main Pane

File generation control

Use these preferences to control the locations at which model build artifacts
are placed. By default, build artifacts are placed in the current working folder
(pwd) at the time update diagram or code generation is initiated. For more
information, see these controls:

e “Simulation cache folder” on page 4-22

e “Code generation folder” on page 4-23

4-21

4 Simulink® Preferences Window

Simulation cache folder
Specify root folder in which to put model build artifacts used for simulation.

Settings
Default:''

Enter a string specifying a valid folder path. If no path is specified, build
artifacts are placed in the current working folder (pwd) at the time update
diagram 1is initiated.

Tip

You can specify an absolute or relative path to the folder. For example:

® C:\Work\mymodelsimcache and /mywork/mymodelsimcache specify
absolute paths.

* mymodelsimcache is a path relative to the current working folder (pwd).
The software converts a relative path to a fully qualified path at the time
the preference is set. For example, if pwd is ' /mywork', the result is
/mywork/mymodelsimcache.

® ../test/mymodelsimcache is a path relative to pwd. If pwd is ' /mywork',
the result is /test/mymodelsimcache.

Command-Line Information

Parameter: CacheFolder
Type: string

Value: valid folder path
Default: '

See Also
“Simulation Target Output File Control”

4-22

Main Pane

Code generation folder

Specify root folder in which to put Simulink Coder code generation files.

Settings
Default:''

Enter a string specifying a valid folder path. If no path is specified, build
artifacts are placed in the current working folder (pwd) at the time code
generation is initiated.

Tip

You can specify an absolute or relative path to the folder. For example:

® C:\Work\mymodelgencode and /mywork/mymodelgencode specify absolute
paths.

* mymodelgencode is a path relative to the current working folder (pwd).
The software converts a relative path to a fully qualified path at the time
the preference is set. For example, if pwd is ' /mywork', the result is
/mywork/mymodelgencode.

e ../test/mymodelgencode is a path relative to pwd. If pwd is ' /mywork",
the result is /test/mymodelgencode.

Command-Line Information

Parameter: CodeGenFolder
Type: string

Value: valid folder path
Default: '

See Also

“Control the Location for Generated Files” in the Simulink Coder
documentation

4-23

4 Simulink® Preferences Window

4-24

Print

Use a white canvas (background) or the canvas color of the model when
printing a model.

Settings
Default: White

White
Use a white canvas.

Match Canvas Color
Match the canvas color of the model.

Command-Line Information

Parameter: PrintBackgroundColorMode
Type: string

Value: White | MatchCanvas

Default: White

See Also
“Print and Export Models”

Export

Match the canvas (background) color of the model, use a white canvas, or use
a transparent canvas for model files that you export to another file format,
such as .png or .jpeg.

Settings
Default: Match Canvas Color

Match Canvas Color
Match the canvas color of the model.

White
Use a white canvas.

Main Pane

Transparent
Use a transparent canvas, so that whatever is behind the canvas image
shows through.

Command-Line Information

Parameter: ExportBackgroundColorMode
Type: string

Value: White | MatchCanvas | Transparent
Default: MatchCanvas

See Also
“Export Models to Third-Party Applications”

Clipboard

Match the canvas (background) color of the model, use a white canvas, or use
a transparent canvas for model files that you export to another application.

Settings
Default: Match Canvas Color

Match Canvas Color
Match the canvas color of the model.

White
Use a white canvas.

Transparent
Use a transparent canvas, so that whatever is behind the canvas image
shows through.

Command-Line Information

Parameter: ClipboardBackgroundColorMode
Type: string

Value: White | MatchCanvas | Transparent
Default: MatchCanvas

4-25

4 Simulink® Preferences Window

See Also
“Export Models to Image File Formats”

File format for new models and libraries

Settings
Default:SLX

Specify the default file format for new models and libraries.

MDL
Save new models and libraries in MDL format.

SLX
Save new models and libraries in SLX format.

Command-Line Information

Parameter: ModelFileFormat
Type: string

Value: 'mdl' | 'slx'
Default: slx

Tips

® You can choose model file format when using Save As.

¢ To set this preference at the command-line, use one of the following
commands:

set_param(0, 'ModelFileFormat', 'slx")
set_param(0, 'ModelFileFormat', 'mdl")

¢ For information about the SLX model file format, see “Saving Models in
the SLX File Format”.

4-26

Display Defaults for New Models Pane

Display Defaults for New Models Pane

Pﬁ Simulink Preferences

[F=3 EoR =4

Display Defaults for New Models

4 bﬁ Simulink Preferences

g] Font Defaults for New Mol
B Editor Defaults

4 @ Configuration Defaults
@ Salver
@ Data Import/Export
@ Optimization
@ Diagnostics

@ Model Referencing
@ Simulation Target

@ Code Generation

@ HDL Code Generation

E] Display Defaults for New Models

% Data Management Defaults Show library links

@ Hardware Implementation

These values will be inherited by new models

Model Browser
dels

Show masked subsystems

Display
Wide nonscalar lines

Show port data types

In this section...

“Simulink Display Defaults Overview” on page 4-27
“Show masked subsystems” on page 4-29
“Show library links” on page 4-30

“Wide nonscalar lines” on page 4-32

“Show port data types” on page 4-33

Simulink Display Defaults Overview

Configure display options for the Model Browser, block connection lines and
port data types.

Configuration

1 Select check boxes to configure display properties that will be applied to all
new block diagrams.

4-27

4 Simulink® Preferences Window

4-28

2 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

These values will be inherited by new block diagrams.

See Also

e “Model Browser” (Windows only)
® Signal Display Options

Display Defaults for New Models Pane

Show masked subsystems

Specify whether masked subsystems and their contents are shown in the
Model Browser (Windows only).

Settings
Default: Off

¥ On
Display masked subsystems and their contents in the Model Browser.
I off

Do not display masked subsystems and their contents in the Model
Browser.

Command-Line Information

Parameter: BrowserLookUnderMasks
Type: string

Value: 'on' | 'off'

Default: 'off'

4-29

4 Simulink® Preferences Window

Show library links

Specify whether library links and their contents are shown in the Model
Browser (Windows only).

Settings
Default: Off

¥ On
Display library links and their contents in the Model Browser.

I off
Do not display library links and their contents in the Model Browser.

Command-Line Information

Parameter: BrowserShowLibraryLinks
Type: string

Value: 'on' | 'off!'

Default: 'off"

4-30

4 Simulink® Preferences Window

4-31

4 Simulink® Preferences Window

Wide nonscalar lines

Specify whether to show thick lines for nonscalar connections between blocks.

Settings
Default: Off
0 On
Show thick lines for nonscalar connections between blocks

I ofr

Do not show thick lines for nonscalar connections between blocks

Command-Line Information

Parameter: WideVectorLines
Type: string

Value: 'on' | 'off!'
Default: 'off'

4-32

Display Defaults for New Models Pane

Show port data types

Specify whether to show the data type on each block port

Settings
Default: Off
¥ On
Display the data type for each port on each block.

" o
Do not display data types on block ports.

Command-Line Information

Parameter: ShowPortDataTypes
Type: string

Value: 'on' | 'off!'

Default: 'off"

4-33

4 Simulink® Preferences Window

4-34

Font Defaults for New Models Pane

4 @ Configuration Defaults
@ Solver
@ Data Import/Export
@ Optimization
@ Diagnostics

@ Model Referencing
@ Simulation Target

@ Code Generation

@ HDL Code Generation

J'i'ﬁ':?imulink Preferences EI@
— Font Defaults for New Models
‘4 9& |mu|||.1k Preferences These values will be inherited by new models -
Display Defaults for New Models
g] Font Defaults for New Models iis
Editor Defaults [Arial v|[pain =] [w ~
9’& Data Management Defaults Sample

@ Hardware Implementation

m

The quick brown fox jumps over the lazy dog. 1234567890

Lines

[Arial ~ | [Piain |z ~

Sample

The quick brown fox jumps over the lazy dog. 1234567890

4 T b

\) Help Apply

Simulink Font Defaults Overview
Configure font options for blocks, lines and annotations.
Configuration

1 Use the drop-down lists to specify font types, styles, and sizes that will be
applied to all new block diagrams.

2 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

These properties will be inherited by new block diagrams.

Editor Defaults Pane

Editor Defaults Pane

bﬁ Simulink Preferences

4 P simuiink Preferences

Editor Defaults
9’& Data Management Defaults
4 @ Configuration Defaults
@ Solver
@ Data Import/Export
@ Optimization
@ Diagnostics

@ Model Referencing
@ Simulation Target

@ Code Generation

@ HDL Code Generation

Display Defaults for New Models s
g] Font Defaults for New Models] Use dassic diagram theme

@) Hardware Implementation Toolbar Configuration

[E=% E=h =55
Editor Defaults
These options affect the behavior of all Simulink models -
Line crossing style:
@ Tunnel _) Line Hop) Mone 1
|
— + -
Scroll wheel controls zooming
File Toolbar
@ MNew/Save I Mew/Open/Save) Mone
[print 2
"

In this section...

“Simulink Editor Defaults Overview” on page 4-36
“Use classic diagram theme” on page 4-36

“Line crossing style” on page 4-36

“Scroll wheel controls zooming” on page 4-37

“File Toolbar” on page 4-37

“Print” on page 4-37

“Cut/Copy/Paste” on page 4-37

“Undo/Redo” on page 4-37

“Browse Back/Forward/Up” on page 4-37
“Library/Model Configuration/Model Explorer” on page 4-37
“Refresh Blocks” on page 4-37

“Update Diagram” on page 4-38

“Simulation” on page 4-38

4-35

4 Simulink® Preferences Window

4-36

In this section...

“Debug Model” on page 4-38
“Model Advisor” on page 4-38
“Build” on page 4-38

“Find” on page 4-38

Simulink Editor Defaults Overview
Configure the Simulink Editor.

These options affect the behavior of all Simulink models. The options relate
to the how models appear in terms of the visual theme, the scroll wheel
behavior, and the toolbar configuration.

Use classic diagram theme

Cause Simulink diagrams to appear in the Simulink Editor using the visual
theme that was used in the Simulink Editor before R2012b.

If you check Use classic diagram theme, Simulink does not display content
preview. For details, see “Preview Content of Hierarchical Items”.

Line crossing style

Change the default display for signal lines that cross. By default, straight
signal lines that cross each other but are not connected display a slight gap
before and after the vertical line where it intersects the horizontal line. This
display style is Tunnel.

The Line Hop format shows a bend where the vertical line intersects the
horizontal line. Simulink adjusts the side the bend appears on to avoid
overlapping with a block icon. If having the bend on either side overlaps with
a block, Simulink uses a solid line.

The None format uses solid lines. This format can provide a slight
performance improvement for updating very large models. If you enable the

Editor Defaults Pane

Simulink Preferences > Editor Defaults > Use classic diagram theme
preference, Simulink uses a solid line.

Scroll wheel controls zooming

Use the scroll wheel on the mouse to control zooming instead of scrolling. For
more information, see “Zoom and Pan Block Diagrams”.

File Toolbar

Specify whether to display the New/Save, the New/Open/Save, or no file
toolbar.

Print
Specify show or hide the Print toolbar.

Cut/Copy/Paste
Specify show or hide the Cut/Copy/Paste toolbar.

Undo/Redo
Specify show or hide the Undo/Redo toolbar.

Browse Back/Forward/Up
Specify show or hide the Browse Back/Forward/Up toolbar.

Library/Model Configuration/Model Explorer

Specify show or hide the Library/Model Configuration/Model Explorer
toolbar.

Refresh Blocks
Specify show or hide the Refresh Blocks toolbar.

4-37

4 Simulink® Preferences Window

4-38

Update Diagram
Specify show or hide the Update Diagram toolbar.

Simulation
Specify show or hide the Simulation toolbar.

Debug Model
Specify show or hide the Debug Model toolbar.

Model Advisor
Specify show or hide the Model Advisor toolbar.

Build
Specify show or hide the Build toolbar.

Find

Specify show or hide the Find toolbar.

Data Management Defaults Pane

Data Management Defaults Pane

bﬁ Simulink Preferences

4 bﬁ Simulink Preferences
Editor Defaults
@ Salver

@ Optimization
@ Diagnostics

Display Defaults for New Models
ﬂ Font Defaults for New Models The following setting is used to create parameter and signal objects

*4 Data Management Defaults
4 @ Configuration Defaults

@ Data Import/Export

@ Hardware Implementation
@ Model Referencing

@ Simulation Target

@ Code Generation

@ HDL Code Generation

Data Manag t Defaults
Data Object Defaults

in the Model Explorer. Itis also available in the Data Object Wizard,
and for specifying embedded signal objects for signals and block states

Package: |Simulink v| | Refresh

In this section...

“Simulink Data Management Defaults Overview” on page 4-39

“Package” on page 4-39

Simulink Data Management Defaults Overview

Configure options for setting the default package that will be used in the
Model Explorer, Data Object Wizard and Signal Properties.

Package

Set the default package that will be used in the Model Explorer, Data Object
Wizard and Signal Properties.

Settings
Default: Simulink

® (Click Refresh to load all packages that are on the MATLAB path.

4-39

4 Simulink® Preferences Window

Command-Line Information

Parameter: DefaultDataPackage
Type: string

Value: any valid value

Default: Simulink

4-40

Configuration Defaults Pane

Configuration Defaults Pane

%Simulink Preferences EI@
‘Confi ion P: ters: Config ion Defaults
4 bﬁ Simulink Preferences

-

Display Defaults for New Models -

) Font Defaults for New Models Model Configuration Preferences

P Editor Defaults The Configuration Preferences are the template for the Configuration

tor Detad Parameters of newly created models. Any changes made here will be inherited

bﬁ Data Management Defaults by any new models which are created in this MATLAE session. They will also be E

4 @ Configuration Defaults saved to a file and loaded into memory automatically at the start of next

@ Salver MATLAE session.

@ Data Import/Export

@ Optimization

@ Diagnostics

@ Hardware Implementation
@ Model Referencing

@ Simulation Target

@) Code Generation Name: |Configuration Defaults

@ HDL Code Generation . 52

\) Revert Help Apply

Simulink Configuration Defaults Overview

On the main Configuration Defaults pane you can edit the description of your
template configuration set.

Expand the tree under Configuration Defaults to edit the template
Configuration Parameters to be used as defaults for new models.

Configuration

1 Expand the tree under Configuration Defaults to edit the template for
default Configuration Parameters.

2 Edit Configuration Parameters that you want to apply to all new block
diagrams.

3 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

4-41

4 Simulink® Preferences Window

These values will be inherited by new block diagrams.

See Also

“Configuration Parameters Dialog Box Overview” on page 1-3

4-42

Simulink Mask Editor

® “Mask Editor Overview” on page 5-2

¢ “Icon & Ports Pane” on page 5-5

e “Parameters & Dialog Pane” on page 5-12
e “Initialization Pane” on page 5-29

¢ “Documentation Pane” on page 5-33

5 Simulink® Mask Editor

Mask Editor Overview

A mask is a custom user interface for a block that hides the block’s contents,
making it appear to the user as an atomic block with its own icon and
parameter dialog box. The Mask Editor, helps you to:

Design mask dialog box containing any of the Parameter, Display, and
Action dialog controls.

Promote all or some of the block parameters from underlying blocks.

Add custom icons to a block mask. The mask icon can change dynamically
based on changes in parameter values.

Add initialization code and initialize variables. Variables initialized by the
mask can be passed along to the underlying block parameters.

Create mask callbacks that run MATLAB code when mask dialog is opened,
parameters are changed, you do an update diagram, or simulate a model.

Provide mask documentation and set mask block type.

For information on creating or editing masks in Simulink, see “Masking”.

You can open the Mask Editor for a block, in one of following ways:

To create a new mask, select the block to be masked, and from the
Diagram menu, select Mask > Create Mask. You can also right click the
block context menu, and select Mask > Create Mask.

To edit an existing mask, select the masked block, and from the Diagram
menu, select Mask > Edit Mask. You can also right click the block
context menu, and select Mask > Edit Mask.

You can also open the Mask Editor using the keyboard shortcut Ctrl+M
(on all platforms, including Macintosh).

The Mask Editor opens, looking similar to the figure below. If the block is
already masked the mask definition appears on the editor. You can change
the mask as needed.

Mask Editor Overview

Y Mask Editor : Product = | B |

Icon & Ports | Parameters & Dialog | Initialization | Documentation

Options Icon drawing commands

Elock frame
Visible -
Icon transparency
:Qpaque v:
Icon units
:Autoscale ':
Icon rotation
:F\xad V:
Port rotation
Default

Examples of drawing commands

Command .pDrt_label {label specific ports) v:
Syntax port_label(output’, 1, xy’) v
Preview [0K I [Cancel] [Help] [Apply]

The Mask > Look Under Mask option shows the following:

¢ For a subsystem block, shows the blocks inside the masked subsystem.
¢ For regular masked block, shows the built-in block dialog box.
¢ For linked masked blocks, shows the base mask dialog box.

The Mask Editor contains a set of tabbed panes, each of which enables you
to define a feature of the mask:

¢ The Icon & Ports pane enables you to define the block icon. See “Icon
& Ports Pane” on page 5-5.

¢ The Parameters & Dialog pane enables you to design the mask dialog
box. See “Parameters & Dialog Pane” on page 5-12.

¢ The Initialization pane enables you to specify the initialization
commands. See “Initialization Pane” on page 5-29.

5-3

5 Simulink® Mask Editor

¢ The Documentation pane enables you to define the mask type, mask
description, and the mask help. See “Documentation Pane” on page 5-33.

Following buttons appear on the Mask Editor:

® The Preview button applies the changes you made, and opens the mask
dialog box.

The OK button applies the mask settings and closes the Mask Editor.

The Cancel button closes the Mask Editor without applying any changes
you made to the mask.

The Help button displays online information about the Mask Editor.

The Apply button applies the mask settings and leaves the Mask Editor
open.

The Unmask button deletes the mask and closes the Mask Editor. To
create the mask again, select the block and choose Mask > Create Mask.

Icon & Ports Pane

Icon & Ports Pane

In this section...

“About the Icon & Ports Pane” on page 5-5

“Options” on page 5-6

“Icon drawing commands” on page 5-10

“Examples of drawing commands” on page 5-11

About the Icon & Ports Pane

Use the Icon & Ports pane to create block icons that contain descriptive text,
state equations, images, and graphics.

Y Mask Editor : Product =NACN X
Icon & Ports | Parameters & Dialog | Initialization | Documentation
Options Icon drawing commands
Elock frame
Visible -
Icon transparency
| Opaque ~)
Icon units
|Autoscale)
Icon rotation
| Fixed =
Port rotation
Default
Examples of drawing commands
Command |port_label (label specific ports) -
L J s
Syntax port_label(output’, 1, xy’)
Preview [0K I [Cancel] [Help] [Apply]

The Icon & Ports pane contains the controls described in this section.

5-5

5 Simulink® Mask Editor

5-6

Options

These controls allow you to specify the following attributes of the mask icon.

Block frame

The block frame is the rectangle that encloses the block. You can choose

to show or hide the frame by setting the Frame parameter to Visible or
Invisible. The default is to make the block frame visible. For example, this
figure shows visible and invisible block frames for an AND gate block.

O~ i

Visible Invisible

Icon transparency

The icon transparency can be set to Opaque or Transparent, based on whether
you want to hide or show what is underneath the icon. The default option
Opaque hides information such as port labels. This figure shows opaque

and transparent icons for an AND gate block. The text is displayed on the
transparent icon, and hidden in the opaque icon.

—]
— AND | f——
—™ D]
Opague Transparent

Icon units

This option controls the coordinate system used by the drawing commands. It
applies only to the plot and text drawing commands. You can select from
among these choices: Autoscale, Normalized, and Pixel.

ma (X, ma) 1,1 block width, blods heighi
min (X}, min() 0, 0,0
Autoscale Mormalized Pixel

Icon & Ports Pane

® Autoscale scales the icon to fit the block frame. When the block is re-sized,
the icon 1s also re-sized. For example, this figure shows the icon drawn
using these vectors:

X=[023409]; Y=1[46358];

v

The lower-left corner of the block frame is (0,3) and the upper-right corner
is (9,8). The range of the x-axis is 9 (from O to 9), while the range of the
y-axis is 5 (from 3 to 8).

® Normalized draws the icon within a block frame whose bottom-left corner
1s (0,0) and whose top-right corner is (1,1). Only X and Y values between
0 and 1 appear. When the block is re-sized, the icon is also re-sized. For
example, this figure shows the icon drawn using these vectors:

X=1.0.2.3 .4 .9];Y=1[.4 .6 .3 .5 .8];

A

® Pixel draws the icon with X and Y values expressed in pixels. The icon
1s not automatically re-sized when the block is re-sized. To force the icon
to re-size with the block, define the drawing commands in terms of the
block size.

Icon rotation

When the block is rotated or flipped, you can choose whether to rotate or flip
the icon or to have it remain fixed in its original orientation. The default is
not to rotate the icon. The icon rotation is consistent with block port rotation.
This figure shows the results of choosing Fixed and Rotates icon rotation
when the AND gate block is rotated.

5-7

5 Simulink® Mask Editor

5-8

vy Yy v

) L
Fixed Hniuies:[

Port rotation
The Icon & Ports > Port rotation port option lets you specify a port rotation
type for the masked block. The choices are:

o default

Ports are reordered after a clockwise rotation to maintain a left-to-right
port numbering order for ports along the top and bottom of the block and
a top-to-bottom port numbering order for ports along the left and right
sides of the block.

® physical

Ports rotate with the block without being reordered after a clockwise
rotation.

The default rotation option is appropriate for control systems and other
modeling applications where block diagrams typically have a top-down and
left-right orientation. It simplifies editing of diagrams, by minimizing the
need to reconnect blocks after rotations to preserve the standard orientation.

Similarly, the physical rotation option is appropriate for electronic,
mechanical, hydraulic, and other modeling applications where blocks
represent physical components and lines represent physical connections.
The physical rotation option more closely models the behavior of the devices
represented (that is, the ports rotate with the block as they would on a
physical device). In addition, the option avoids introducing line crossings as
the result of rotations, making diagrams easier to read.

For example, the following figure shows two diagrams representing the same
transistor circuit. In one, the masked blocks representing transistors use
default rotation and in the other, physical rotation.

Icon & Ports Pane

€

FHF1

~€ €L

FMF2 FMF3

€__

NPHM1

-4

FHNF4

€

NPMN3
L—=a
]

NFM2

Default Rotation Fhysica

]
MPM4

| Rotaticon

Both diagrams avoid line crossings that make diagrams harder to read. The
next figure shows the diagrams after a single clockwise rotation.

5 Simulink® Mask Editor

5-10

l’ .
FHF1 /@\ PMF2Z /@\ FMA2 /é\ FHP4 /@\
R L

/@\ NPMN3 /@\
My iy

NPNZ /@\ MPN4 /@\

L1 - B

NFM1

Default Rotaticn Physical Rotation

Note The rotation introduces a line crossing the diagram that uses default
rotation but not in the diagram that uses physical rotation. Also that there is
no way to edit the diagram with default rotation to remove the line crossing.
See “Change a Block Orientation” for more information.

Icon drawing commands

The Icon drawing commands text box allows you to enter code that draws
the block icon. For a list of the commands, see “Masking”.

The drawing commands execute in the order in which they appear in this
field. Drawing commands have access to all variables in the mask workspace.
If any drawing command cannot successfully execute, the icon displays three
question marks.

The drawing commands execute when the block is drawn and when:

® Changes are made and applied in the mask dialog box.

Icon & Ports Pane

® Changes are made in the Mask Editor.

® Changes are done to the block diagram that affects the block appearance,
such as rotating the block.

Examples of drawing commands

This pane demonstrates the use of various icon drawing commands. To
determine the syntax of a command, select the command from the Command
list. An example of the selected command is displayed at the bottom of the
pane and the icon produced by the command is displayed to the right of the
list.

Examples of drawing commands

Command |port_label (label specific ports)

Syntax port_label{'output’, 1, %y}

5-11

5 Simulink® Mask Editor

5-12

Parameters & Dialog Pane

In this section...

“About the Parameters & Dialog Pane” on page 5-12
“Controls” on page 5-14

“Dialog box” on page 5-21

“Property editor” on page 5-25

About the Parameters & Dialog Pane

The Parameters & Dialog pane enables you to design rich mask dialog boxes
using the dialog controls in the Parameters, Display, and Action palettes.

| Mask Editor : Gain EI@

Icon 8 Ports | Parameters & Dialog | Initialization | Documentation
Controls Dialog box Property editor
¥ Parameter Type Prompt Name =l Properties
ECit =1 %6<MaskType> DescGroupVar
@ Hezdelinn o %< MaskDescription> DescTextVar

PoPup LT Pt et il

(®) Radio button = Dialog

" Slider Drag or Click items in left palette te add to dialeg. Enable

40 Dial Use Delete key to remove items from dialog. Visible

[E Spinbax = Layout

[s] DataTypestr Ttem location
Min

Max

@ Promote
Eﬂ Promote all

MName ParameterGroup...

Prompt Simulink:studios.,

> Display

Panel

=1 Group box
[3 Tab

A Ted

|_'E Image

> Action

c9 Hyperlink

@ Button

4] 3

Unmask Preview | QK |[Cancel ” Help H Apply]

The Parameters & Dialog pane consists of the following:

Parameters & Dialog Pane

e Controls

Controls are elements in a mask dialog box that users can interact with
to enter or manipulate data. You can add the following dialog controls
to a mask dialog box:

Parameter

Parameters are user inputs that take part in simulation. The
Parameters palette has a set of parameter dialog controls that you can
add to a mask dialog box. See “Parameter” on page 5-14.

Display

Controls on the Display palette allow you to group dialog controls in the
mask dialog box and display text and images. See “Display” on page 5-19.

Action

Action controls allow you to perform some actions in the mask dialog
box. For example, you can click a hyperlink or a button in the mask
dialog box. See “Action” on page 5-20.

¢ Dialog box

You can drag and drop dialog controls from the palettes to the Dialog box
to create a mask dialog box. See “Dialog box” on page 5-21.

* Property editor

The Property editor allows you to view and set the properties for the
Parameters, Display, and Action controls. See “Property editor” on page
5-25.

Properties

Defines basic information on all dialog controls, such as Name, Value,
Prompt, and Type.

Attributes

Defines how a mask dialog control is interpreted. Attributes are related
only to parameters.

Dialog
Defines how dialog controls are displayed in the mask dialog box.

Layout

5-13

5 Simulink® Mask Editor

Defines how dialog controls are laid out on the mask dialog box.

Controls

Parameter

The Parameters palette contains a set of parameters where your users input
data for simulation. Each parameter has a sequence number associated with
it. The Parameter palette has the following controls:

* Pararmeter
Edit

@ Check box
Popup

@ Radic button
M Slider

40 Dial

[El Spinbox

[21z) DataTypeStr
[=] Min

[=] Max

ﬁ;] Promote
51 Promote all

. Edit parameter: Allows you to enter a parameter value by typing
it into the field.

U] Ell Check box parameter: Accepts a Boolean value.

. Popup parameter: Allows you to select a parameter value from a list of
possible values.

e % Radio button parameter: Allows you to select a parameter value
from a list of possible values. All options for a radio button are displayed
on the mask dialog.

e " Slider parameter: Allows you to slide to values within a range defined
by minimum and maximum values.

5-14

Parameters & Dialog Pane

@ Dial parameter: Allows you to dial to values within a range defined
by minimum and maximum values.

= Spinbox parameter: Allows you to spin through values within a range
defined by minimum and maximum values.

L=+l DataTypeStr parameter: Enables you to specify a data type for a mask
parameter. For more details, see “DataTypeStr parameter” on page 5-15.

=] Min parameter: Specifies a minimum value for the parameter.

[#| Max parameter: Specifies a maximum value for the parameter. If you
add a Max parameter after a Min parameter, it appears in the same row in
the mask dialog box.

= Promote parameter: Allows you to selectively promote block
parameters from underlying blocks to the mask. Click the Type options
field to open the Promoted Parameter Selector dialog box. In this

dialog box, you can select the block parameters that you want to promote.
Click OK to close it.

=1 Promote all: Allows you to promote all underlying block parameters to
the mask. When you promote all parameters, the promote operation deletes
parameters that have been promoted previously.

You can set the parameter properties from the “Property editor” on page 5-25.

DataTypeStr parameter. A data type parameter enables you to specify

a data type for a mask parameter. A data type parameter is particularly
useful when you include a masked block in a user-defined library. For more
information, see “Masks on Blocks in User Libraries”.

To specify the data type options, click Type options in the Property editor.
It opens the Type Options Editor dialog. In the Type options dialog box
following tabs appear:

Inherit rules — Specify inheritance rules for determining the data types.

Built-in types — Specify one or more built-in Simulink data types, such
as double or int8.

Fixed-point — Specify the scaling and signed modes for a fixed-point
data type.

5-15

5 Simulink® Mask Editor

5-16

e User-defined — Specify a bus or enumerated (enum) data type, or both.

® Associations — Associate a data type parameter with a Min, Max, and
Edit parameter.

The next figure shows a data type control definition for an Output Data
Type prompt that allows your masked block users to select any built-in type.
To restrict the choices to built-in data types, do not select any check boxes on
the Fixed-point and User-defined tabs.

| Type Options Editor : 'Parameter’ of block Product l&]

Description

Specify the data type(s) for the selected parameter. To specify the data type options
use one or more of Inherit rules, Built-in types, Fixed-point, User-Defined, Association
tabs.

Data type options

| Inherit rules|§BU”t‘ir1 t.‘r'F'95§| Fixed-point | User-defined | Associations

»

double
single
int8
uintd
intls
uintlé
int32
uint32 —
boolean

m

o

Specifying Inheritance Rules

To specify one or more inheritance rules for the data type control, on the
Inherit rules tab, select the appropriate check boxes.

Parameters & Dialog Pane

1 Type Options Editor : 'Parameterf’ of block Product @

Description

Specify the data type(s) for the selected parameter. To specify the data type options
use one or more of Inhert rules, Built-in types, Fixed-point, User-Defined, Asseciation
tabs.

Data type options

{Inherit fU|ES§| Built-in typesl Fixed-point | User-defined | Associations

F Commen Simulink rules

i [] Inherit: auto

[Inherit: Inherit via internal rule

[] Inherit: Inherit via back propagation
[T] Inherit: Same as input

[Inherit: Same as first input

[] Inherit: Same as second input
Advanced Simulink rules

By default, the Inherit rules tab includes two groups of rules:

e Common Simulink rules

® Advanced Simulink rules

The Common Simulink rules are inheritance rules that apply to many blocks
in the Simulink library. The Advanced Simulink rules are inheritance rules
that apply to one or only a few Simulink blocks.

If there are any custom inheritance rules registered on the MATLAB search
path, then the Inherit rules tab also includes a third group of rules: Custom
Simulink rules.

Specifying a Fixed-Point Data Type

To specify a fixed-point data type for a parameter:

1 Select the parameter on the Parameter palette.

2 In the Type Options Editor, click the Fixed-point tab.

5-17

5 Simulink® Mask Editor

5-18

3 Select the appropriate scaling and signed mode check boxes. If you do not
select a mode, then a user cannot choose a fixed-point data type.

4 Click the Associations tab.

Your users can use the association when specifying a fixed-point data type.
For a value or value range for a signal, the association can help with the
selection of the user select the data type with the best precision.

5 Specify the minimum, maximum, and value for the fixed-point data.
Specifying an Enumerated Data Type

1 Select the parameter on the Parameter palette.

2 In the Type Options Editor , click the User-defined tab.
3 Select the Enumerated check box.

Specifying a Bus Data Type

1 Select the parameter on the Parameter palette.

2 In the Type Options Editor, click the User-defined tab.
3 Select the Bus check box.

If you specify a bus data type as one of the data types that your users can
specify in the mask dialog box, then you must add code in the Initialization
pane. Add code to handle the way that the DataTypeStr parameter of an
underlying block specifies the data type. For more information about adding
code to the Initialization pane, see “Initialization Pane” on page 5-29.

To handle cases where the DataTypeStr parameter of an underlying block
specifies the data type by including the mask parameter as a literal (for
example, 'outportdatatype'), add code similar to this code:

maskDTPrmString = get_param(gcb, MaskDTPrmName) ;

if is_a_bus_type(MaskDTPrmString)
blockDTPrmString = get_param(BlockUnderMask, BlockDTPrmName);
set_param(BlockUnderMask, BlockDTPrmName,

Parameters & Dialog Pane

['Bus: blockDTPrmString'];
end

To handle cases where the DataTypeStr parameter of an underlying block
defines the data type using bus object specification, add code similar to this
code:

maskDTPrmString = get_param(gcb, MaskDTPrmName);
if ~is_a_bus_type(maskDTPrmString)
blockDTPrmString = get_param(BlockUnderMask, BlockDTPrmName) ;
set_param(BlockUnderMask, BlockDTPrmName,
remove_bus_colon_prefix(blockDTPrmString));
end

Data Type Evaluation

Simulink enables the Evaluate option for data type controls. You cannot
change this setting.

Display

Controls on the Display palette allow you to group dialog controls in the
mask dialog box and display text and images. The Display palette has the
following controls:

1 Group box
[Tab
A Text

ﬂ Irmage

¢ i Panel: Container for a group of dialog controls. You use a Panel for
logical grouping of dialog controls.

e L1 Group box: Container used for organizing other dialog controls and
containers in the mask dialog box.

5-19

5 Simulink® Mask Editor

5-20

e (I Tab: Tab is used for grouping dialog controls in the mask dialog box. A
tab is contained within a tab container. A tab container can have multiple
tabs.

o A Text: Text displayed in the mask dialog box.

. Iig Image: Image displayed in the mask dialog box.

You can set or view the properties for containers from the “Property editor”
on page 5-25.

When you create a new mask, the description group box contains the following
two rows that are added to the Dialog box.

Prompt Name Description

%<MaskType> DescGroupVar Mask type specifies a title for
the group box. The text that you
enter in the Mask type field is
mapped to %<MaskType>.

%<MaskDescriptionPescTextVar Mask description specifies
information related to the mask.
The text you enter in the Mask
description field is mapped to
%<MaskDescription>.

Action

These controls allow you to perform some actions in the mask dialog box. For
example, click on a hyperlink or button on the mask dialog box. The Action
palette has the following controls:

* Action
{-‘? Hyperlink

@ Button

. 1'.'.'5; Hyperlink: Hyperlink text displayed on the mask dialog box.

Parameters & Dialog Pane

e “I¥ Button: Button controls on the mask dialog box. You can program
button for specific actions.

You can set the properties for Action controls from the “Property editor”
on page 5-25.

Dialog box

You can build a hierarchy of dialog controls by dragging them from a palette
to the Dialog box. You can also double-click dialog controls on the palettes to
add them to the Dialog box. You can have maximum of 32 levels of hierarchy
in the Dialog box.

The Dialog box displays three fields: Type, Prompt, and Name.

¢ The Type field shows the type of the dialog control and cannot be edited. It
also displays a sequence number for parameter dialog controls.

¢ The Prompt field shows the prompt text for the dialog control. For label
and hyperlink, a default prompt string is provided.

¢ The Name field is auto-populated and uniquely identifies the dialog
controls.

The Parameter controls are displayed in light blue background whereas
the Display and Action controls are displayed in white background on the
Dialog box.

Moving dialog controls in the Dialog box

You can move dialog controls up and down in the hierarchy using drag

and drop. When you drag a control, a cue line indicates the level in the
hierarchy. Based on the type of dialog control, you can drag and drop controls
as indicated:

¢ Drag and drop on the container dialog control in the Dialog box

= Drop before it: Adds the dialog control as a sibling before the current
dialog control.

5-21

5 Simulink® Mask Editor

é 5 groupbox j,_

= Drop on it: Adds to the container as a child at the end.
g M LERL

= Drop after it: Adds the dialog control as a sibling after the current
dialog control.

box

¢ Drag and drop on the non-container dialog control in the Dialog
box

= Drop before it: Adds the dialog control before the current dialog control.

[T edit
.,
i checkbox

= Drop after it: Adds the dialog control after the current dialog control.

* Drag and drop into Dialog box blank area

= The element is added to the root level node.

Cut, Copy, and Paste Controls
You can cut, copy, and paste dialog controls on the Dialog box using the
context menu.

éj popup Gair:
[ih] DataTypeStr Data Param
<] Minimum Min2

5-22

Parameters & Dialog Pane

Delete nodes
Right-click the control that you want to delete in the Dialog box. Select,

Delet
s laan from the context menu. For example, to delete a Check box

dialog control, right-click and select Delete:

& Cut Cirl+X
=53] Copy Ctrl+C
4 Paste Ctrl+V

> Delete

You can also use the Delete menu option to delete a dialog control.

Error Display

If you have errors in parameters names, such as, duplicate, invalid parameter
names, or empty names, the mask editor displays the parameter names in red
outline. When you edit the parameters to fix errors, the modified fields are
identified by a yellow background.

Parameter2 22 _ Error: Duplicate
Parameter? #3 parameter
—— | names
Multiplication #4
: Edited
Parameterd L l&— parameters to fix
Parameterd #ﬁl errors

5-23

5 Simulink® Mask Editor

5-24

Dialog box
Type Prompt Mame
=1 o< MaskTypes DescGroupVar
A %< MaskDescription> DescTexdtVar
=+ 51 ParameterGroupVar
-3 #1 edit parameter |Parameterl 2 |
-[30] #2 edit parameter [parametert |
-3 23 edit parameter a
- A text control A &
ﬁ-'? hyperlink control control3 4
ﬂg hyperlink control Control2
~{30] #4 edit parameter b b
f-"? hyperlink control |I:l—|
=N G2 Cantainard .

B

Drag o
Use De

ﬂ Errors

Q Following names are duplicate:

@ Parameterl
& parameterl
ab

(=]

1 Duplicate Parameter, Display, and Action control names are not allowed.

2 Parameter names must be unique and are case insensitive. Names
varying only in lowercase and uppercase letters, are treated as duplicates.

For example, Parameteri and parameter1 are not allowed.

3 Parameter , Display, and Action control names can be same as long as
different lowercase and uppercase characters are used. For example, while

a and A are allowed, b and b are not allowed.

Parameters & Dialog Pane

4 Action and Display control names are case sensitive. For example, while
Control3 and control3 are allowed, control3 and control3 are not
allowed.

Property editor

The Property editor allows you to view and set the properties for
Parameter, Display, and Action dialog controls. The Property editor for
Parameter is shown below:

Property editor

= Properties
Mame Parameter]
Value a
Prompt

Type edit -
El Attributes

Evaluate

Tunable
Read only
Hidden
Mewver save
=l Dialog
Enable
Visible
Callback (Z)
=l Layout

Itemn location Mew row

OOoOO0EE

E &

Prompt location |[Top v]

Properties
You can set the following properties for Parameter, Action, and Display
dialog controls:

5-25

5 Simulink® Mask Editor

5-26

e Name

Uniquely identifies the dialog control in the mask dialog box. The Name
property must be set for all dialog controls.

® Value

Value of the Parameter dialog control. The Value property applies only
to the Parameter dialog controls.

* Prompt

Label text that identifies the parameters in a mask dialog box. The
Prompt property applies to all dialog controls except Panel and Image
dialog control.

e Type

Type of the dialog control. You can change the Type field only for the
Parameter dialog controls.

e Type options

The Type options property allows you to set specific Parameter
properties. The Type options property applies to the Popup, Radio
button, DataTypeStr, and Promoted parameters.

¢ File path

The File path property stores the location of the image file. The File path
property applies only for Image and Button dialog controls.

e Word wrap

The Word wrap property enables word wrapping for long text. The Word
wrap property applies only for Text dialog control.

Attributes

You can set the following attributes for Parameter and Action dialog
controls:

e Evaluate

Simulink uses the value of a mask parameter as the user enters it in the
mask dialog box, or it can evaluate what your user specify and use as the
result of the evaluation. Select the Evaluate option for a parameter to

Parameters & Dialog Pane

specify parameter evaluation (the default). Clear the option to suppress
evaluation.

Tunable

By default, your masked block users can change a mask parameter value
during simulation. Clear the Tunable option to prohibit changing the
parameter value during simulation. If the masked block does not support
parameter tuning, Simulink ignores the Tunable option setting of a mask
parameter. For information about parameter tuning and the blocks that
support it, see “Tunable Parameters”.

Read only

Indicates that the parameter cannot be modified.

Hidden

Indicates that the parameter must not be displayed in the mask dialog box.
Never save

Indicates that the parameter value never gets saved in the model file.

Dialog box

You can set the following Dialog properties for the Parameter and Display
dialog controls:

Enable

Clearing this option makes the selected parameter prompt unavailable and
disables its edit control. Your masked block users cannot set the value of
the parameter.

Visible

The selected parameter appears in the mask dialog box only if this option
is selected.

Callback

MATLAB code that you want Simulink to execute when a user applies a
change to the selected parameter.

5-27

5 Simulink® Mask Editor

5-28

Layout
You can set the location and alignment of the dialog controls in the mask

dialog box as follows:
¢ Item location

Allows you to set the location for the dialog control to appear in the current
rOW OF a New row.

* Prompt location

Allows you to set the prompt location for the dialog control on either the top
or to the left of the dialog control.

¢ Orientation
Allows you to specify horizontal or vertical orientation for sliders and radio

buttons.

You cannot set the Prompt location property for Check box, Dial,
DataTypeStr, and Radiobutton.

Initialization Pane

Initialization Pane

In this section...

“About the Initialization Pane” on page 5-29

“Dialog variables” on page 5-31

“Initialization commands” on page 5-31

“Allow library block to modify its contents” on page 5-32

“Rules for Initialization commands” on page 5-32

About the Initialization Pane

The Initialization pane allows you to enter MATLAB commands that
initialize the masked block.

5-29

5 Simulink® Mask Editor

5-30

¥ Mask Editor : Mu = 5

| Icon & Ports | Parameters & Dialog| Initialization | Documentation

Dialog variables Initialization commands

Allow library block to modify its contents

Unmask H Preview] | oK |’ Cancel ” Help H Apply]

When you open a model, Simulink locates the visible masked blocks that
reside at the top level of the model or in an open subsystem. Simulink only
executes the initialization commands for these visible masked blocks if they
meet either of the following conditions:

® The masked block has icon drawing commands.

Note Simulink does not initialize masked blocks that do not have icon
drawing commands, even if they have initialization commands.

® The masked block belongs to a library and has the Allow library block
to modify its contents enabled.

Initialization Pane

Initialization commands for all masked blocks in a model run when you:

¢ Update the diagram
e Start simulation

® Start code generation
Initialization commands for an individual masked block run when you:

® Change any of the mask parameters that define the mask, such as
MaskDisplay and MaskInitialization, by using the Mask Editor or the
set_param command.

* Rotate or flip the masked block, if the icon depends on the initialization
commands.

e Cause the icon to be drawn or redrawn, and the icon drawing depends
on initialization code.

® Change the value of a mask parameter by using the block dialog box or the
set_param command.

® Copy the masked block within the same model or between different models.

The Initialization pane contains the controls described in this section.

Dialog variables

The Dialog variables list displays the names of the dialog controls and
associated mask parameters, which are defined in the Parameters & Dialog
pane. You can also use the list to change the names of mask parameters. To
change a name, double-click the name in the list. An edit field containing
the existing name appears. Edit the existing name and click Enter or click
outside the edit field to confirm your changes.

Initialization commands

Enter the initialization commands in this field. You can enter any valid
MATLAB expression, consisting of MATLAB functions and scripts, operators,
and variables defined in the mask workspace. Initialization commands run
in the mask workspace, not the base workspace.

5-31

5 Simulink® Mask Editor

Allow library block to modify its contents

This check box is enabled only if the masked subsystem resides in a library.
Checking this option allows the block’s initialization code to modify the
contents of the masked subsystem by adding or deleting blocks and setting
the parameters of those blocks. Otherwise, an error is generated when a
masked library block tries to modify its contents in any way.

Rules for Initialization commands

Following rules apply for mask initialization commands:

* Do not use initialization code to create mask dialogs whose appearance
or control settings change depending on changes made to other control
settings. Instead, use the mask callbacks provided specifically for this
purpose.

¢ Avoid prefacing variable names in initialization commands with
MaskParam_L_ and MaskParam_M_. These specific prefixes are reserved for
use with internal variable names.

® Avoid using set_param commands to set parameters of blocks residing in
masked subsystems that reside in the masked subsystem being initialized.
See “Setting Nested Masked Block Parameters” for details.

5-32

Documentation Pane

Documentation Pane

In this section...

“About the Documentation Pane” on page 5-33
“Mask type” on page 5-34

“Mask description” on page 5-34

“Mask help” on page 5-34

About the Documentation Pane

The Documentation pane enables you to define or modify the type,
description, and help text for a masked block.

| Icon & Ports | Parameters & Dialog | Initialization| Documentation

Mask type

Mask description

Mask help

Unmask | 0K ‘[Cancel H Help H Apply l

#| Mask Editor : Fen o=) .

5-33

5 Simulink® Mask Editor

5-34

Mask type

The mask type is a block classification that appears in the mask dialog box
and on all Mask Editor panes for the block. When Simulink displays a mask
dialog box, it suffixes (mask) to the mask type. To define the mask type, enter
it in the Mask type field. The text can contain any valid MATLAB character,
but cannot contain line breaks.

Mask description

The mask description is summary help text that describe the block’s purpose
or function. The description appears in the mask dialog box under the mask
type. To define the mask description, enter it in the Mask description field.
The text can contain any legal MATLAB character. Simulink automatically
wraps long lines. You can force line breaks by using the Return key.

Mask help

The Online Help for a masked block provides information in addition to that
provided by the Mask type and Mask description fields. This information
appears in a separate window when the masked block user clicks the Help
button on the mask dialog box. To define the mask help, enter one of the
following in the Mask help field.

e URL specification

® web or eval command

e Literal or HTML text

Provide an URL

If the first line of the Mask help field is an URL, Simulink passes the URL
to your default web browser. The URL can begin with http:, www:, file:,
ftp:, or mailto:. Examples:

http://www.mathworks.com
file:///c:/mydir/helpdoc.html

Once the browser is active, MATLAB and Simulink have no further control
over its actions.

Documentation Pane

Provide a web Command

If the first line of the Mask help field is a web command, Simulink passes
the command to MATLAB, which displays the specified file in the MATLAB
Online Help browser. Example:

web([docroot '/MyBlockDoc/' get_param(gcb, 'MaskType') '.html'])

See the MATLAB web command documentation for details. A web command
used for mask help cannot return values.

Provide an eval Command

If the first line of the Mask help field is an eval command, Simulink passes
the command to MATLAB, which performs the specified evaluation. Example:

eval('!Word My_Spec.doc')

See MATLAB eval command documentation for details. An eval command
used for mask help cannot return values.

Provide Literal or HTML Text

If the first line of the Mask help field is not an URL, or a web or eval
command, Simulink displays the text in the MATLAB Online Help browser
under a heading that is the value of the Mask type field. The text can contain
any legal MATLAB character, line breaks, and any standard HTML tag,
including tags like img that display images.

Simulink first copies the text to a temporary folder, then displays the text
using the web command. If you want the text to display an image, you can
provide a URL path to the image file, or you can place the image file in the
temporary folder. Use tempdir to find the temporary folder that Simulink
uses for your system.

5-35

5 Simulink® Mask Editor

5-36

Concurrent Execution

Window

e “Concurrent Execution Window: Main Pane” on page 6-2
e “Data Transfer Pane” on page 6-7

e “CPU Pane” on page 6-12

e “Hardware Node Pane” on page 6-14
e “Periodic Pane” on page 6-17

® “Task Pane” on page 6-21

® “Interrupt Pane” on page 6-25

® “System Tasks Pane” on page 6-31

e “System Task Pane” on page 6-32

e “System Interrupt Pane” on page 6-36
® “Profile Report Pane” on page 6-39

6 Concurrent Execution Window

Concurrent Execution Window: Main Pane

In this section...

“Concurrent Execution Window Overview” on page 6-2

“Enable explicit model partitioning for concurrent behavior” on page 6-5

Concurrent Execution Window Overview

& Concurrent Execution: untitled (Active) EI@

Select:

4 | Concurrent Execution
[4 Data Transfer

Concurrent Execution

4 @ (Ignored) Tasks and Mapping The configuration for concurrent execution enables definition of tasks and assignment of
4[] cru blocks to these tasks.
Periodic Associated model:untitied
& System tasks Associated configuration: Confiquration

G5 Profile report

Concurrency modeling options

Enable explicit model partitioning for concurrent behavior

Target architecture: Default (built-in) Select...

J Revert Help Apply

The Concurrent Execution window comprises the following panes:

¢ Concurrent Execution (root level)

Display general information for the model, including model name,
configuration set name, and status of configuration set.

e Data Transfer

6-2

Concurrent Execution Window: Main Pane

Configure data transfer methods between tasks.
Tasks and Mapping

Map blocks to tasks.

“CPU Pane” on page 6-12

Set up software nodes.

Periodic

Name periodic tasks.

Task

Define and configure a periodic task that the target operating system
executes.

Interrupt

Define aperiodic event handler that executes in response to hardware or
software interrupts.

System Task Pane

Display system tasks.

System Task

Display periodic system tasks.
System Interrupt

Display interrupt system tasks.
“Profile Report Pane” on page 6-39

Generate and examine profile report for model.

Click items in the tree to select panes.

Configuration

This pane appears only if you select Allow tasks to execute concurrently
on target in the Model Explorer dialog box.

1 In the Model Hierarchy pane, right-click the active configuration and select
Show Concurrent Execution options.

6-3

6 Concurrent Execution Window

6-4

The Dialog pane displays the Solver parameters, which now contains a
Concurrent execution options section.

2 Select Allow tasks to execute concurrently on target.

3 Click Configure Tasks.

The concurrent execution dialog box is displayed.

See Also
“Customize Concurrent Execution Settings”

Concurrent Execution Window: Main Pane

Enable explicit model partitioning for concurrent
behavior

Specify whether you want to manually map tasks (explicit mapping) or use
the rate-based tasks.

Settings
Default: On

M On

Enable manual mapping of tasks to blocks.

I ofr

Allow implicit rate-based tasks.

Command-Line Information

Parameter: ExplicitPartitioning
Type: string

Value: 'on' | 'off!'

Default: 'off"

See Also
“Customize Concurrent Execution Settings”

Dependencies
Selecting this check box:

® Allows custom task-to-block mappings. The node name changes to Tasks
and Mapping label and the icon changes.

¢ Disables the Automatically handle rate transition for data transfer
check box on the Data Transfer pane.

Clearing this check box

¢ (Causes the software to ignore the task-to-block mappings. The node name
changes to (Ignored) Tasks and Mapping.

6-5

6 Concurrent Execution Window

® Enables the Automatically handle rate transition for data transfer
check box on the Data Transfer pane.

6-6

Data Transfer Pane

Data Transfer Pane

In this section...

“Data Transfer Pane Overview” on page 6-7
“Periodic signals” on page 6-8
“Continuous signals” on page 6-9

“Extrapolation method” on page 6-10

“Automatically handle rate transition for data transfer” on page 6-10

Data Transfer Pane Overview

Data Transfer Options
Defaults
Periodic signals: |Ensure deterministic transfer (maximum delay) ~ |
Continuous signals: |En5ure deterministic transfer (minimum delay) - |
Extrapolation method: |None - |
Automatically handle rate transition for data transfer

Edit options to define data transfer between tasks.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

Periodic signals
Select the data transfer mode of synchronous signals.

Settings
Default: Ensure deterministic transfer (maximum delay)

Ensure deterministic transfer (maximum delay)
Ensure maximum capacity during data transfer.

Ensure data integrity only
Ensure maximum data integrity during data transfer.

Dependency

This parameter is enabled if the Enable explicit task mapping to override
implicit rate-based tasks check box on the Concurrent Execution pane is
selected.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

6-8

Data Transfer Pane

Continuous signals
Select the data transfer mode of continuous signals.

Settings
Default: Ensure deterministic transfer (maximum delay)

Ensure deterministic transfer (maximum delay)
Ensure maximum capacity during data transfer.

Ensure data integrity only
Ensure maximum data integrity during data transfer.

Dependency

This parameter is enabled if the Enable explicit task mapping to override
implicit rate-based tasks check box on the Concurrent Execution pane is
cleared.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

6-9

6 Concurrent Execution Window

6-10

Extrapolation method

Select the extrapolation method of data transfer to configure
continuous-to-continuous task transitions.

Settings
Default: None

None
Do not use any extrapolation method for task transitions.

Zero Order Hold
User zero order hold extrapolation method for task transitions.

Linear
User linear extrapolation method for task transitions.

Quadratic
User quadratic extrapolation method for task transitions.

Dependency

This parameter is enabled if the Enable explicit task mapping to override
implicit rate-based tasks check box on the Concurrent Execution pane is
selected.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

Automatically handle rate transition for data transfer

Select the extrapolation method of data transfer to configure
continuous-to-continuous task transitions.

Data Transfer Pane

Settings
Default: Off

v On
Enable the software to handle rate transitions for data transfers
automatically, without user intervention.

I off
Disable the software from handling rate transitions for data transfers
automatically.

Dependencies

This parameter is enabled if the Concurrent Execution pane Enable explicit
task mapping to override implicit rate-based tasks check box is cleared.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

6-11

6 Concurrent Execution Window

CPU Pane

CPU Pane Overview

Configure software nodes.

See Also

“Customize Concurrent Execution Settings”

6-12

CPU Pane

Name
Specify a unique name for software node.

Settings
Default: CPU

® Alternatively, enter a unique string to identify the software node. This
value must be a valid MATLAB variable.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6-13

6 Concurrent Execution Window

Hardware Node Pane

Hardware Node Pane Overview

Configure hardware nodes.

6-14

Hardware Node Pane

Name
Specify name of hardware node.

Settings
Default: FPGAN

® Alternatively, enter a unique string to identify the hardware node. This
value must be a valid MATLAB variable.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

Clock Frequency [MHz]

Specify clock frequency of hardware node.

Settings
Default: 33

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

Color
Specify the color for the hardware node icon.

Settings
Default: Next color in basic color sequence

6-15

6 Concurrent Execution Window

Tips

The hardware node icon appears in the tree.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

See Also
“Customize Concurrent Execution Settings”

6-16

Periodic Pane

Periodic Pane

In this section...

“Periodic Pane Overview” on page 6-17
“Name” on page 6-18

“Periodic Trigger” on page 6-19
“Color” on page 6-20

“Template” on page 6-20

Periodic Pane Overview

Periodic Trigger: Periodic
Properties
Mame: Periodic

Period: 1

Color: @

Configure periodic (synchronous) tasks.

See Also
“Customize Concurrent Execution Settings”

6-17

6 Concurrent Execution Window

6-18

Name
Specify a unique name for the periodic task trigger configuration.

Settings
Default: Periodic

® Alternatively, enter a unique string to identify the periodic task trigger
configuration. This value must be a valid MATLAB variable.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

Periodic Pane

Periodic Trigger

Specify the period of a periodic trigger

Settings
Default:

¢ Change ERTDefaultEvent to the actual trigger source event.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

6-19

6 Concurrent Execution Window

6-20

Color
Specify a color for the periodic trigger icon.

Settings
Default: Blue

¢ (Click the color picker icon to select a color for the periodic trigger icon.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

Template

Specify the XML-format custom architecture template file that code
generation properties use for the task, periodic trigger or aperiodic triggers.

Settings
Default: None

The XML-format custom architecture template file defines these settings.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

e “Define a Custom Architecture File”

e “Customize Concurrent Execution Settings”

Task Pane

Task Pane

In this section...

“Task Pane Overview” on page 6-21
“Name” on page 6-22

“Period” on page 6-23

“Color” on page 6-24

Task Pane Overview

Task: Controllers

Properties
Mame: Controllers

Period: 0.1

Color: @

Specify concurrent execution tasks. You can add tasks for periodic and
interrupt-driven (aperiodic) tasks.

See Also
“Customize Concurrent Execution Settings”

6-21

6 Concurrent Execution Window

6-22

Name
Specify a unique name for the task configuration.

Settings
Default: Task

® Alternatively, enter a unique string to identify the periodic task trigger
configuration. This value must a valid MATLAB variable.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

Task Pane

Period
Specify the period for the task.

Settings

Default: 1

Minimum: 0

¢ Enter a positive real or ratio value.
Tip

You can parameterize this value by using MATLAB expression strings as
values.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

6-23

6 Concurrent Execution Window

Color

Specify a color for the task icon.

Settings
Default: Blue

¢ (lick the color picker icon to select a color for the task icon.

Tips
The task icon appears on the top left of the Model block. It indicates the task
to which the Model block is assigned.

® Asyou add a task, the software automatically assigns a color to the task
icon, up to six colors. When the current list of colors is exhausted, the
software reassigns previously used colors to the new tasks, starting with
the first color assigned.

¢ If you select a different color for an icon and then use the software to
automatically assign colors, the software assigns a preselected color.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

6-24

Interrupt Pane

Interrupt Pane

In this section...

“Interrupt Pane Overview” on page 6-25

“Name” on page 6-26

“Color” on page 6-27

“Aperiodic trigger source” on page 6-28

“Signal number [2,SIGRTMAX-SIGRTMIN-1]” on page 6-29

“Event name” on page 6-30

Interrupt Pane Overview
Configure interrupt-driven (aperiodic) tasks.

Aperiodic Trigger: Interrupt

Properties

Mame: Interrupt

Color: @

Code generation properties

Aperiodic trigger source: |Posix Signal (Linwsfvcworks 6.x) -

Signal number [2,5SIGRTMAX-SIGRTMIN-1]: 2

See Also
“Customize Concurrent Execution Settings”

6-25

6 Concurrent Execution Window

6-26

Name
Specify a unique name for the interrupt-driven task configuration.

Settings
Default: Interrupt

¢ Enter a unique string to identify the interrupt-driven task configuration.
This value must a valid MATLAB variable.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

Interrupt Pane

Color

Specify a color for the interrupt icon.

Settings
Default: Blue

¢ (lick the color picker icon to select a color for the interrupt icon.

Tips
The interrupt icon appears on the top left of the Model block. It indicates the
task to which the Model block is assigned.

® As you add an interrupt, the software automatically assigns a color to the
interrupt icon, up to six colors. When the current list of colors is exhausted,
the software reassigns previously used colors to the new interrupts,
starting with the first color assigned.

e If you select a different color for an icon and then use the software to
automatically assign colors, the software assigns a preselected color.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

6-27

6 Concurrent Execution Window

6-28

Aperiodic trigger source
Specify the trigger source for the interrupt-driven task.

Settings
Default: Posix Signal (Linux/VxWorks 6.x)
Posix Signal (Linux/VxWorks 6.Xx)

For Linux or VxWorks® systems, select Posix Signal (Linux/VxWorks
6.X).

Event (Windows)
For Windows systems, select Event (Windows).

Dependencies

This parameter enables either Signal number
[2,SIGRTMAX-SIGRTMIN-1] or Event name.

e Selecting Posix Signal (Linux/VxWorks 6.x) enables the following
parameter:
Signal number [2,SIGRTMAX-SIGRTMIN-1]

e Selecting Event (Windows) enables the following parameter:

Event name

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

Interrupt Pane

Signal number [2,SIGRTMAX-SIGRTMIN-1]

Enter the POSIX® signal number as the trigger source.

Settings

Default: 2

Minimum: 2

Maximum: SIGRTMAX-SIGRTMIN-1

¢ Enter the POSIX signal number as the trigger source.

Dependencies

Aperiodic trigger source > Posix signal (Linux/VxWorks 6.x) enables
this parameter.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

6-29

6 Concurrent Execution Window

6-30

Event name

Enter the name of the event as the trigger source.

Settings
Default: ERTDefaultEvent

® Change ERTDefaultEvent to the actual trigger source event.

Dependencies
Aperiodic trigger source > Event (Windows) enables this parameter.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

System Tasks Pane

System Tasks Pane

System Tasks Pane Overview
Display system tasks.

System tasks

Autogenerate tasks and mapping(finvokes update diagram]) | |

See Also
“Customize Concurrent Execution Settings”

6-31

6 Concurrent Execution Window

6-32

System Task Pane

In this section...

“System Task Pane Overview” on page 6-32
“Name” on page 6-33
“Period” on page 6-34

“Color” on page 6-35

System Task Pane Overview
Display periodic system tasks.

Task: Discretel

Properties

Mame: |Discrete]

See Also
“Customize Concurrent Execution Settings”

System Task Pane

Name
Specify a default name for the periodic system task configuration.

Settings
Default: DiscreteN

Tip
To change the name, period, or color of this task, right-click the task node and
select Convert to editable periodic task.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6-33

6 Concurrent Execution Window

Period
Specify the period for the task.

Settings
Default: 1

Minimum: 0
¢ Enter a positive real or ratio value.
Tip

¢ To change the name, period, or color of this task, right-click the task node
and select Convert to editable periodic task.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6-34

System Task Pane

Color
Specify the outline color for the task icon.

Settings
Default: Blue

Tips
The task icon appears on the top left of the Model block. It indicates the
task the Model block is assigned to.

¢ To change the name, period, or color of this task, right-click the task node
and select Convert to editable periodic task.

See Also
“Customize Concurrent Execution Settings”

6-35

6 Concurrent Execution Window

6-36

System Interrupt Pane

In this section...

“System Interrupt Pane Overview” on page 6-36
“Name” on page 6-37
“Color” on page 6-38

System Interrupt Pane Overview
Display interrupt system tasks.

Aperiodic Trigger: Asynchronous

Properties

Mame: |Asynchrono

AR e

Color: 0

5

See Also
“Customize Concurrent Execution Settings”

System Interrupt Pane

Name
Specify a default name for the interrupt system task.

Settings
Default: Asynchronous

Tip
To change the name or color of this task, right-click the task node and select
Convert to editable aperiodic trigger.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6-37

6 Concurrent Execution Window

6-38

Color
Specify the outline color for the task icon.

Tips
The task icon appears on the top left of the Model block. It indicates the
task the Model block is assigned to.

¢ To change the name or color of this task, right-click the task node and
select Convert to editable aperiodic task.

See Also
“Customize Concurrent Execution Settings”

Profile Report Pane

Profile Report Pane

In this section...

“Profile Report Pane Overview” on page 6-39

“Number of time steps” on page 6-40

Profile Report Pane Overview

Generate and examine profile report for model.

Profile Report

MNumber of time steps: 100

-3

Generate task execution profile report (*invokes build and execution) @

Cannot find an assodated profile report in the current folder. Generate one using the button above.

See Also
“Customize Concurrent Execution Settings”

6-39

6 Concurrent Execution Window

Number of time steps
Specify number of time steps to generate profile report.

Settings
Default: 100

e Enter the number of time steps to collect data.

Command-Line Information
See “Command-Line Interface for Concurrent Execution”.

See Also
“Customize Concurrent Execution Settings”

6-40

Simulink Simulation
Stepper

7 Simulink® Simulation Stepper

Simulation Stepping Options

Simulation Stepping Options: wdp @
Enable stepping back
Maximum number of saved back steps |10
Interval between stored back steps 10 steps
Mowve back/forward by 1 steps
Pause simulation when time reaches |5
J oK] | Cancel | | Help | | Apply

In this section...

“Simulation Stepping Options Overview” on page 7-2
“Enable stepping back” on page 7-4

“Maximum number of saved back steps” on page 7-5
“Interval between stored back steps” on page 7-6

“Move back/forward by” on page 7-7

“Pause simulation when time reaches” on page 7-8

Simulation Stepping Options Overview

Use the Simulation Stepping Options dialog box to configure the time and the
manner of manually stepping through a simulation.

Simulation Stepping Options

Configuration
This pane appears when you select Simulation > Stepping Options.

1 Set the time at which you wish to pause the simulation

2 To step backwards through a simulation, select Enable stepping back
and specify the total number and frequency of snapshots.

3 Specify the increment of steps by which the simulation steps either forward
or backwards.

4 To pause simulation at a particular time, select Pause simulation when
time reaches check box and enter the pause time.

Tips
® To start the Simulation Stepping Options dialog box from the Simulink
toolbar, click <.

® You can change the value while the simulation is running or paused.

See Also

* “How Simulation Stepper Helps With Model Analysis”

7-3

7 Simulink® Simulation Stepper

Enable stepping back

Enable stepping back.

Settings
Default: Off

¥ On
Enable stepping back.

I off
Disable stepping back.

Tip
Simulation stepping (forward and back) is available only for Normal and
Accelerator modes.

Dependencies

This parameter enables the Maximum number of saved back steps and
Interval between stored back steps parameters.

See Also
“How Simulation Stepper Helps With Model Analysis”

7-4

Simulation Stepping Options

Maximum number of saved back steps

Enter the maximum number of snapshots that the software can capture. A
snapshot at a particular simulation time captures all the information required
to continue a simulation from that point.

Settings
Default: 10
Minimum: 0

Dependencies

Enable stepping back enables this parameter and the Interval between
stored back steps parameter.

See Also

¢ “How Simulation Stepper Helps With Model Analysis”

¢ “Simulation Snapshots”

7 Simulink® Simulation Stepper

7-6

Interval between stored back steps

Enter the number of major time steps to take between capturing simulation
snapshots.

Settings
Default: 10

Minimum: 1

¢ “How Simulation Stepper Helps With Model Analysis”

® “Simulation Snapshots”

Tip

The number of steps to skip between snapshots. This parameter enables
you to save snapshots of simulation state for stepping backward at periodic
intervals, such as every three steps forward. This interval is independent
of the number of steps taken in either the forward or backward direction.
Because taking simulation snapshots affects simulation speed, saving
snapshots less often can improve simulation speed.

Dependencies

Enable stepping back enables this parameter and the Maximum number
of saved back steps parameter.

See Also

¢ “How Simulation Stepper Helps With Model Analysis”

¢ “Simulation Snapshots”

Simulation Stepping Options

Move back/forward by

Enter the number of major time steps for a single call to step forward or back.

Settings
Default: 1

Minimum: 1
Tip
The maximum number of steps, or snapshots, to capture while simulating

forward. The greater the number, the more memory the simulation occupies
and the longer the simulation takes to run.

See Also

¢ “How Simulation Stepper Helps With Model Analysis”

¢ “Simulation Snapshots”

7 Simulink® Simulation Stepper

7-8

Pause simulation when time reaches
Pause simulation when time reaches the specified time(s).

Settings
Default: Off

¥ On
Enable stepping back.

I off
Disable stepping back.

Selecting this check box enables the associated text box. In this text box,
enter the time at which simulation is to be paused.

Default: 5
Minimum: 0

¢ This value can be a scalar value, or a vector of times. Specifying a vector of
pause times is equivalent to specifying multiple separate pause times for
a single simulation.

You can specify pause times as variables in the model or MATLAB
workspace.

¢ The stepper does not alter the course of the simulation. As a consequence,
specifying a value for a pause time does not necessarily pause the
simulation at exactly that time. Instead, the simulation pauses at whatever
simulation time is closest to the requested pause time, without going below
it.

See Also
“How Simulation Stepper Helps With Model Analysis”

Simulink Variant Manager

* “Variant Manager Overview” on page 8-2

® “Variant Configuration Data Pane” on page 8-3
e “Model Hierarchy Pane” on page 8-6

® “Validation Results Pane” on page 8-9

8 Simulink® Variant Manager

8-2

Variant Manager Overview

Related
Examples

Concepts

Using the Variant Manager you can define and manage variant
configurations in the following ways.

e Explore, visualize, and manipulate variant hierarchy.

® Define, validate, and visualize variant configurations.

¢ Define and validate constraints for the model.

® Specify the default active configuration.

® Set control variables to either strings or Simulink.Parameter objects.
® Associate Simulink.VariantConfigurationData object with model.

e Validate a variant configuration or model without updating the model.
The Variant Manager contains the following panes.

¢ The Variant Configuration Data pane enables you to define variant
configurations and constraints, and export them as variant configuration
data objects. See “Variant Configuration Data Pane” on page 8-3.

®* The Model Hierarchy pane enables you to visualize the variant hierarchy.
See “Model Hierarchy Pane” on page 8-6.

¢ The Validation Results pane displays information on the source of control

variables and validation errors. See “Validation Results Pane” on page 8-9.

¢ “Add and Validate Variant Configurations”
¢ “Import Control Variables to Variant Configuration”
¢ “Define Constraints and Export Variant Configurations”

* “Variant Management”

Variant Configuration Data Pane

Variant Configuration Data Pane

In this section...

“Name” on page 8-3
“Configurations” on page 8-3

“Constraints” on page 8-5

Use the Variant Configuration Data pane to create configurations, define
control variables, associate referenced model configurations, and define
constraints. The configurations and associated data are stored in a variant
configuration data object.

Name

Enter the Name of the variant configuration data object that you want to

B
export into and click the Export button .

Configurations

Add, delete, or copy variant configurations. In addition, set a default
configuration.

Description

Add variant configuration

Delete variant configuration

Duplicate variant configuration

| & | (%) Elg

Set/Clear default active configuration

'
—_
—

8-3

8 Simulink® Variant Manager

Description tab
Provide a description for the selected variant configuration.

Control Variables tab

Add, delete, or copy control variables. Toggle data type and import control
variables from the workspace.

Button Description

@ Add control variable

o Delete control variable

&

[Duplicate control variable

_?j Toggle type of a control variable

L=t
A control variable can be either a string or a
Simulink.Parameter object.

[Edit Simulink.Parameter control variables

ﬁ Import control variables from base workspace

Submodel Configurations tab

Define variant configuration for a referenced model. Add lﬂ or delete ‘ﬁ’ a
referenced model configuration.

Variant Configuration Data Pane

Configuration: Configuration

| Descripticn | Control Variables| Submodel Configurations L

5 (]

Submodel Configuration
madel config
Constraints

Specify model-level constraints. Add @ or delete a constraint.

Name
Name of the constraint.

Condition

Condition expression for the constraint that must be satisfied by all variant
configurations.

Description
Description of the constraint.

8 Simulink® Variant Manager

8-6

Model Hierarchy Pane

In this section...

“Validate Configuration” on page 8-7
“Show” on page 8-7

“Hierarchy Table” on page 8-7

You can visualize and explore the variant hierarchy of a model and edit the
properties of variant blocks, their choices, and variant objects from the Model
Hierarchy pane. This pane displays the Name, Submodel Configuration,
Variant Control, and associated Conditions of variant objects used as
variant controls.

You can browse the hierarchy using the navigation icons. The controls on the
Model Hierarchy pane allow you to perform the following actions.

® Refresh and validate hierarchy.
® Display only variant blocks.

e Navigate between active, invalid, and overridden variant choices.

Model Hierarchy Pane

Validate Configuration
Select a configuration from the Validate dropdown to refresh the

@ Wariant Manager: slexVariantManagementExample
Variant configuration data Model hierarchy (Configuration: LinnterExp)
Mame |8 = [- -
g Validate |LinnterExp | Show | Model & variant blocks~ [« (2] [#
onfigurations | Constraints .
Name (Using base workspace) odel Configuration Variant Control
Name =-{%a] slexvaria
— LinlnterE: ontroller
[] Linear Controller L4 LINEAR_CONTROL
Nonlinear Controller L NON_LINEAR_CONTROL
Smart Controller L4 SMART_CONTROL
= = [C[Plant
External ') EXTERNAL_PLANT
= Internal L INTERNAL_PLANT
[Experimental SimType==2
E Standard SimType==1
Configuration: LinlnterExp
Description| Control Variables | Submodel Configurations
& L)
Name Value
0 |Ctrl 1
- [PlantLocation 2
& [GimType 2
Validation results (Configuration: LinInterExp)
Source Message
[=-Data sources used for models
i glexVariantManagementExample Configuration 'LinlnterExp' of unnamed variant configuration data
hierarchy

Show

Selectively display blocks in the variant hierarchy.
¢ Model and variant blocks: Only model reference and variant blocks
are displayed.

e All hierarchical blocks: All hierarchical blocks in the model are
displayed.

Hierarchy Table

The model hierarchy is displayed as a tree with each block representing a
node in the hierarchy. The hierarchy displays active, inactive, overridden,

8-7

8 Simulink® Variant Manager

8-8

and invalid variants. You can edit referenced model configurations, variant
controls, and variant conditions.

You can expand nodes to view the underlying blocks. Protected reference
models cannot be viewed in the hierarchy.

The following columns are displayed in the hierarchy table.

Name
Name of the model or block.

Submodel Configuration

Configurations used by referenced models. You can only edit the Submodel
Configuration for rows that display models referenced by the top model.

Variant Control

Variant control parameter of a variant choice. This column is identical to the
variant control column of the parameter dialog box of variant blocks. You can
edit this column for variant choices across the hierarchy.

Condition

Displays and allows you to edit the condition for the Simulink.Variant object
when it is used as variant control. You can edit this column for variant
choices across the variant hierarchy.

Validation Results Pane

Validation Results Pane

In this section...

“Source” on page 8-9

“Message” on page 8-9

This pane displays information on the source of control variables for the
models in the hierarchy. For example, if a variant configuration is used for a
referenced model, the referenced model name is displayed in the row along
with name of the variant configuration data object and variant configuration.
The pane also displays errors encountered during validation of the variant
configuration.

To revalidate the configuration and refresh the hierarchy, click the Refresh

Fe——l

button LY button.

Source
Model name or block path.

Message
Data source information and errors.

	toc
	Configuration Parameters Dialog Box
	Configuration Parameters Dialog Box Overview
	Model Configuration Pane
	Model Configuration Overview
	Name
	Settings

	Description
	Settings

	Solver Pane
	Solver Overview
	Configuration
	Tips
	See Also

	Start time
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Stop time
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Type
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Solver
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Max step size
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Initial step size
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Min step size
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Relative tolerance
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Absolute tolerance
	Settings
	Tips
	Dependencies
	Command-Line Information for Configuration Parameters
	Recommended Settings
	See Also

	Shape preservation
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Maximum order
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Solver reset method
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of consecutive min steps
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Solver Jacobian Method
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Tasking mode for periodic sample times
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Automatically handle rate transition for data transfer
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Deterministic data transfer
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Higher priority value indicates higher task priority
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Zero-crossing control
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Time tolerance
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of consecutive zero crossings
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Algorithm
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Signal threshold
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Periodic sample time constraint
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Fixed-step size (fundamental sample time)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Sample time properties
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Extrapolation order
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number Newton's iterations
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Allow tasks to execute concurrently on target
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Data Import/Export Pane
	Data Import/Export Overview
	Configuration
	Tips
	See Also

	Input
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Initial state
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Time
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	States
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Output
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Final states
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Format
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Limit data points to last
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Decimation
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Save complete SimState in final state
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Signal logging
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Signal logging format
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Data stores
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Output options
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Refine factor
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Output times
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Save simulation output as single object
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Record and inspect simulation output
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Optimization Pane: General
	Optimization Pane: General Tab Overview
	Tips
	See Also

	Block reduction
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Conditional input branch execution
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Implement logic signals as Boolean data (vs. double)
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Application lifespan (days)
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Use integer division to handle net slopes that are reciprocals o
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Use floating-point multiplication to handle net slope correction
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Default for underspecified data type
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Optimize using the specified minimum and maximum values
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Remove root level I/O zero initialization
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Use memset to initialize floats and doubles to 0.0
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Remove internal data zero initialization
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Optimize initialization code for model reference
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Remove code from floating-point to integer conversions that wrap
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Remove code from floating-point to integer conversions with satu
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Remove code that protects against division arithmetic exceptions
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Compiler optimization level
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Verbose accelerator builds
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Optimization Pane: Signals and Parameters
	Optimization Pane: Signals and Parameters Tab Overview
	Tips
	See Also

	Inline parameters
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Signal storage reuse
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Enable local block outputs
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Reuse local block outputs
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Eliminate superfluous local variables (Expression folding)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Reuse global block outputs
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Minimize data copies between local and global variables
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Inline invariant signals
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Optimize global data access
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Simplify array indexing
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Use memcpy for vector assignment
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Memcpy threshold (bytes)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Pack Boolean data into bitfields
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Bitfield declarator type specifier
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Loop unrolling threshold
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum stack size (bytes)
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Pass reusable subsystem outputs as
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Parameter structure
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Model Parameter Configuration Dialog Box
	Source list
	Refresh list
	Add to table
	New
	Storage class
	Storage type qualifier

	Optimization Pane: Stateflow
	Optimization Pane: Stateflow Tab Overview
	Tips
	See Also

	Use bitsets for storing state configuration
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Use bitsets for storing Boolean data
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Diagnostics Pane: Solver
	Solver Diagnostics Overview
	Configuration
	Tips
	See Also

	Algebraic loop
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Minimize algebraic loop
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Block priority violation
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Min step size violation
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Sample hit time adjusting
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Consecutive zero-crossings violation
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Unspecified inheritability of sample time
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Solver data inconsistency
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Automatic solver parameter selection
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Extraneous discrete derivative signals
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	State name clash
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	SimState interface checksum mismatch
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	SimState object from earlier release
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Diagnostics Pane: Sample Time
	Sample Time Diagnostics Overview
	Configuration
	Tips
	See Also

	Source block specifies -1 sample time
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Discrete used as continuous
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Multitask rate transition
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Single task rate transition
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Multitask conditionally executed subsystem
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Tasks with equal priority
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Enforce sample times specified by Signal Specification blocks
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Diagnostics Pane: Data Validity
	Data Validity Diagnostics Overview
	Configuration
	Tips
	See Also

	Signal resolution
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Division by singular matrix
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Underspecified data types
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Simulation range checking
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Detect overflow
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Inf or NaN block output
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	"rt" prefix for identifiers
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Detect downcast
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Detect overflow
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Detect underflow
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Detect precision loss
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Detect loss of tunability
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Detect read before write
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Detect write after read
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Detect write after write
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Multitask data store
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Duplicate data store names
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Detect multiple driving blocks executing at the same time step
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Underspecified initialization detection
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Check undefined subsystem initial output
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Check preactivation output of execution context
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Check runtime output of execution context
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Array bounds exceeded
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Model Verification block enabling
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Diagnostics Pane: Type Conversion
	Type Conversion Diagnostics Overview
	Configuration
	Tips
	See Also

	Unnecessary type conversions
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Vector/matrix block input conversion
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	32-bit integer to single precision float conversion
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Detect underflow
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Detect precision loss
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Detect overflow
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Diagnostics Pane: Connectivity
	Connectivity Diagnostics Overview
	Configuration
	Tips
	See Also

	Signal label mismatch
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Unconnected block input ports
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Unconnected block output ports
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Unconnected line
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Unspecified bus object at root Outport block
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Element name mismatch
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Mux blocks used to create bus signals
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Bus signal treated as vector
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Non-bus signals treated as bus signals
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Repair bus selections
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Invalid function-call connection
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Context-dependent inputs
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Diagnostics Pane: Compatibility
	Compatibility Diagnostics Overview
	Configuration
	Tips
	See Also

	S-function upgrades needed
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Block behavior depends on frame status of signal
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Diagnostics Pane: Model Referencing
	Model Referencing Diagnostics Overview
	Configuration
	Tips
	See Also

	Model block version mismatch
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Port and parameter mismatch
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Model configuration mismatch
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Invalid root Inport/Outport block connection
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Unsupported data logging
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Diagnostics Pane: Saving
	Saving Tab Overview
	Configuration
	Tips
	See Also

	Block diagram contains disabled library links
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Block diagram contains parameterized library links
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Diagnostics Pane: Stateflow
	Stateflow Diagnostics Overview
	Configuration
	Tips
	See Also

	Unused data and events
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Unexpected backtracking
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Invalid input data access in chart initialization
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	No unconditional default transitions
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Transition outside natural parent
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Transition shadowing
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Undirected event broadcasts
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Transition action specified before condition action
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Hardware Implementation Pane
	Hardware Implementation Overview
	Configuration
	Tips
	See Also

	Device vendor
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Device type
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: char
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: short
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: int
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: long
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: long long
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: float
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: double
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: native
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: pointer
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Largest atomic size: integer
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Largest atomic size: floating-point
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Byte ordering
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Signed integer division rounds to
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended settings
	See Also

	Shift right on a signed integer as arithmetic shift
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended settings
	See Also

	Enable long long
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Test hardware is the same as production hardware
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended settings
	More information

	Device vendor
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Device type
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: char
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: short
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: int
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: long
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: long long
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: float
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: double
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: native
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of bits: pointer
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Largest atomic size: integer
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Largest atomic size: floating-point
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Byte ordering
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Signed integer division rounds to
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended settings
	See Also

	Shift right on a signed integer as arithmetic shift
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended settings
	See Also

	Enable long long
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Model Referencing Pane
	Model Referencing Pane Overview
	Configuration
	Tips
	See Also

	Rebuild
	Settings
	Definitions
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Never rebuild diagnostic
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Enable parallel model reference builds
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	MATLAB worker initialization for builds
	Settings
	Limitation
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Total number of instances allowed per top model
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Pass fixed-size scalar root inputs by value for code generation
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Minimize algebraic loop occurrences
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Propagate all signal labels out of the model
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Propagate sizes of variable-size signals
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Model dependencies
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Simulation Target Pane: General
	Simulation Target: General Tab Overview
	Configuration
	Tip
	See Also

	Enable debugging/animation
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Enable overflow detection (with debugging)
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Ensure responsiveness
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Echo expressions without semicolons
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Ensure memory integrity
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Generate typedefs for imported bus and enumeration types
	Settings
	Tips
	Command-Line Information

	Simulation target build mode
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Simulation Target Pane: Symbols
	Simulation Target: Symbols Tab Overview
	Configuration
	Tip
	See Also

	Reserved names
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Simulation Target Pane: Custom Code
	Simulation Target: Custom Code Tab Overview
	Configuration
	Tip
	See Also

	Parse custom code symbols
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Source file
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Header file
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Initialize function
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Terminate function
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Include directories
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Source files
	Settings
	Limitation
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Libraries
	Settings
	Limitation
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Use local custom code settings (do not inherit from main model)
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Run on Target Hardware Pane
	Run on Target Hardware Pane Overview
	Configuration
	Tip

	Target hardware
	Settings
	See Also

	External mode transport layer
	See Also

	Enable External mode
	Settings
	See Also

	IP address
	Connection type
	Settings
	See Also

	Device name
	See Also

	TCP/IP port (1024-65535)
	Settings
	See Also

	Enable overrun detection
	Settings
	See Also

	Device
	Settings
	See Also

	Package name
	Settings
	See Also

	Digital output to set on overrun
	Settings
	See Also

	Enable communication between two NXT bricks
	Settings
	See Also

	Bluetooth mode
	Settings
	See Also

	Slave Bluetooth address
	See Also

	Host name
	See Also

	User name
	Settings
	See Also

	Password
	Settings
	See Also

	Build directory
	Settings
	See Also

	Set host COM port
	Settings
	See Also

	COM port number
	Settings
	See Also

	Analog input reference voltage
	Settings
	See Also

	Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Seri
	Settings
	See Also

	IP address
	MAC address
	IP address
	Service set identifier (SSID)
	WiFi encryption
	Settings
	See Also

	WPA password
	WEP key
	WEP key index

	Library Browser
	About the Library Browser
	Open the Library Browser
	Libraries Pane
	About the Libraries Pane
	Selecting Nodes
	Expanding and Collapsing Nodes
	Refreshing the Tree View

	Blocks Pane
	About the Blocks Pane
	Choosing the Blocks Pane's Layout
	Tip

	Setting Icon Size
	Selecting Blocks
	Creating an Instance of a Library Block in a Model
	Displaying a Library Block's Parameters
	Displaying Help for a Library Block
	Displaying the Contents of a Sublibrary
	Displaying a Block or Sublibrary's Parent

	Block Description Pane
	Search Toolbar
	About the Search Toolbar
	Using the Search Toolbar to Find Blocks
	Search Text Combo Box
	Search Options Menu
	Regular Expression
	Match Case
	Match Whole Word

	Search Button

	Found Pane
	About the Found Pane
	Selecting a Found Block in Library View
	Displaying a Found Block's Path

	Most Frequently Used Blocks Pane
	Library Data Repository
	Library Browser Keyboard Shortcuts

	Signal Properties Dialog Box
	Signal Properties Dialog Box Overview
	Signal Properties Controls
	Signal name
	Signal name must resolve to Simulink signal object
	Show propagated signals

	Logging and Accessibility Options
	Log signal data
	Test point
	Logging name
	Data
	Limit data points to last
	Decimation

	Simulink Coder Options
	Package
	Storage class
	Storage type qualifier

	Data Transfer Options for Concurrent Execution
	Specify data transfer settings
	Data transfer handling option
	Extrapolation method (continuous-time signals)
	Initial condition

	Documentation Options
	Description
	Document link

	Simulink Preferences Window
	Main Pane
	Simulink Preferences Window Overview
	Configuration
	See Also

	Model File Change Notification
	Updating or simulating the model
	Settings
	Tip
	Dependency
	Command-Line Information
	See Also

	Action
	Settings
	Tip
	Dependencies
	Command-Line Information
	See Also

	First editing the model
	Settings
	Tip
	Command-Line Information
	See Also

	Saving the model
	Settings
	Tip
	Command-Line Information
	See Also

	Autosave
	Save before updating or simulating the model
	Settings
	Tips
	Command-Line Information

	Save backup when overwriting a file created in an older version
	Settings
	Tips
	Command-Line Information

	Warn when opening Model blocks with Normal Mode Visibility set t
	Settings
	Tips

	Notify when loading an old model
	Settings
	Tips
	Command-Line Information

	Do not load models created with a newer version of Simulink
	Settings
	Tip
	Command-Line Information

	Callback tracing
	Settings
	Command-Line Information

	Open the sample time legend whenever sample time display is chan
	Settings
	Command-Line Information

	File generation control
	Simulation cache folder
	Settings
	Tip
	Command-Line Information
	See Also

	Code generation folder
	Settings
	Tip
	Command-Line Information
	See Also

	Print
	Settings
	Command-Line Information
	See Also

	Export
	Settings
	Command-Line Information
	See Also

	Clipboard
	Settings
	Command-Line Information
	See Also

	File format for new models and libraries
	Settings
	Command-Line Information
	Tips

	Display Defaults for New Models Pane
	Simulink Display Defaults Overview
	Configuration
	See Also

	Show masked subsystems
	Settings
	Command-Line Information

	Show library links
	Settings
	Command-Line Information

	Wide nonscalar lines
	Settings
	Command-Line Information

	Show port data types
	Settings
	Command-Line Information

	Font Defaults for New Models Pane
	Simulink Font Defaults Overview
	Configuration

	Editor Defaults Pane
	Simulink Editor Defaults Overview
	Use classic diagram theme
	Line crossing style
	Scroll wheel controls zooming
	File Toolbar
	Print
	Cut/Copy/Paste
	Undo/Redo
	Browse Back/Forward/Up
	Library/Model Configuration/Model Explorer
	Refresh Blocks
	Update Diagram
	Simulation
	Debug Model
	Model Advisor
	Build
	Find

	Data Management Defaults Pane
	Simulink Data Management Defaults Overview
	Package
	Settings
	Command-Line Information

	Configuration Defaults Pane
	Simulink Configuration Defaults Overview
	Configuration
	See Also

	Simulink Mask Editor
	Mask Editor Overview
	Icon & Ports Pane
	About the Icon & Ports Pane
	Options
	Block frame
	Icon transparency
	Icon units
	Icon rotation
	Port rotation

	Icon drawing commands
	Examples of drawing commands

	Parameters & Dialog Pane
	About the Parameters & Dialog Pane
	Controls
	Parameter
	Display
	Action

	Dialog box
	Moving dialog controls in the Dialog box
	Cut, Copy, and Paste Controls
	Delete nodes
	Error Display

	Property editor
	Properties
	Attributes
	Dialog box
	Layout

	Initialization Pane
	About the Initialization Pane
	Dialog variables
	Initialization commands
	Allow library block to modify its contents
	Rules for Initialization commands

	Documentation Pane
	About the Documentation Pane
	Mask type
	Mask description
	Mask help
	Provide an URL
	Provide a web Command
	Provide an eval Command
	Provide Literal or HTML Text

	Concurrent Execution Window
	Concurrent Execution Window: Main Pane
	Concurrent Execution Window Overview
	Configuration
	See Also

	Enable explicit model partitioning for concurrent behavior
	Settings
	Command-Line Information
	See Also
	Dependencies

	Data Transfer Pane
	Data Transfer Pane Overview
	See Also

	Periodic signals
	Settings
	Dependency
	Command-Line Information
	See Also

	Continuous signals
	Settings
	Dependency
	Command-Line Information
	See Also

	Extrapolation method
	Settings
	Dependency
	Command-Line Information
	See Also

	Automatically handle rate transition for data transfer
	Settings
	Dependencies
	Command-Line Information
	See Also

	CPU Pane
	CPU Pane Overview
	See Also

	Name
	Settings
	Command-Line Information
	See Also

	Hardware Node Pane
	Hardware Node Pane Overview
	Name
	Settings
	Command-Line Information
	See Also

	Clock Frequency [MHz]
	Settings
	Command-Line Information
	See Also

	Color
	Settings
	Tips
	Command-Line Information
	See Also
	See Also

	Periodic Pane
	Periodic Pane Overview
	See Also

	Name
	Settings
	Command-Line Information
	See Also

	Periodic Trigger
	Settings
	Command-Line Information
	See Also

	Color
	Settings
	Command-Line Information
	See Also

	Template
	Settings
	Command-Line Information
	See Also

	Task Pane
	Task Pane Overview
	See Also

	Name
	Settings
	Command-Line Information
	See Also

	Period
	Settings
	Tip
	Command-Line Information
	See Also

	Color
	Settings
	Tips
	Command-Line Information
	See Also

	Interrupt Pane
	Interrupt Pane Overview
	See Also

	Name
	Settings
	Command-Line Information
	See Also

	Color
	Settings
	Tips
	Command-Line Information
	See Also

	Aperiodic trigger source
	Settings
	Dependencies
	Command-Line Information
	See Also

	Signal number [2,SIGRTMAX-SIGRTMIN-1]
	Settings
	Dependencies
	Command-Line Information
	See Also

	Event name
	Settings
	Dependencies
	Command-Line Information
	See Also

	System Tasks Pane
	System Tasks Pane Overview
	See Also

	System Task Pane
	System Task Pane Overview
	See Also

	Name
	Settings
	Tip
	Command-Line Information
	See Also

	Period
	Settings
	Tip
	Command-Line Information
	See Also

	Color
	Settings
	Tips
	See Also

	System Interrupt Pane
	System Interrupt Pane Overview
	See Also

	Name
	Settings
	Tip
	Command-Line Information
	See Also

	Color
	Tips
	See Also

	Profile Report Pane
	Profile Report Pane Overview
	See Also

	Number of time steps
	Settings
	Command-Line Information
	See Also

	Simulink Simulation Stepper
	Simulation Stepping Options
	Simulation Stepping Options Overview
	Configuration
	Tips
	See Also

	Enable stepping back
	Settings
	Tip
	Dependencies
	See Also

	Maximum number of saved back steps
	Settings
	Dependencies
	See Also

	Interval between stored back steps
	Settings
	Tip
	Dependencies
	See Also

	Move back/forward by
	Settings
	Tip
	See Also

	Pause simulation when time reaches
	Settings
	See Also

	Simulink Variant Manager
	Variant Manager Overview
	Variant Configuration Data Pane
	Name
	Configurations
	Description tab
	Control Variables tab
	Submodel Configurations tab

	Constraints
	Name
	Condition
	Description

	Model Hierarchy Pane
	Validate Configuration
	Show
	Hierarchy Table
	Name
	Submodel Configuration
	Variant Control
	Condition

	Validation Results Pane
	Source
	Message

	tables
	Benefits and Limitations of Each Option
	Change Detection Processing

